SOME RESULTS ON ADMISSIBILITY OF SIMULTANEOUS ESTIMATES OF REGRESSION COEFFICIENTS AND ERROR VARIONCE Under Matrix Loss Function
-
Graphical Abstract
-
Abstract
Consider linear model Y=(Y1,…,Yn)'=Xβ+ε=Xβ+(ε1,…,εn)',whereX be a n×p known design matrix, β=(β1,…,βp)', σ2>0 be unknown parameters, ε1,…,εn be independent, Eεi=Eεi3=0,Eε42=σ2,Eεi4=3σ4,i=1,2,…,n. In this parper, we give out Some necessary and Sufficient conditions for estimate(AY,Y'BY) of (Sβ, σ2) to be admissible in the class of \mathscrC \times \mathscrD=\left\\left(C Y, Y^\prime D Y\right)\right.:C be a ×n constant matrix,D be a n×n non-negative definite constant matrix under matrix \operatornameloss\binomd_1-S \betad_2-\sigma^2\binomd_1-S \betad_2-\sigma^2^\prime or \binom\fracd_1-S \beta\sigma\fracd_2-\sigma^2\sigma^2\binom\fracd_1-S \beta\sigma\fracd_2-\sigma^2\sigma^2^\prime.
-
-