THE ESTIMATION OF THE DEVIATION BETWEEN THE LEAST SQUARES AND THE BEST LINEAR UNBIASED ESTIMATORS OF THE MEAN VECTOR IN A LINEAR MODEL
-
Graphical Abstract
-
Abstract
Consider the linear model. Y=Xβ+e where E(e)=0,cov(e)=σ2∑,∑≥0. It is well known that \hat\mu=X(X'X)-X'Yand μ*=X(X'T-X)-X'T-Y are respectively the least squares and the best linear unbiased estimators of μ=Xβ, whereT=∑+XUX',U is a symmetric matrix satisfying Rank(T)=Rank(∑X) and T≥0. In this paper, we obtain that \left\|\hat\mu-\mu^*: \leqslant \frac\lambda_1-\lambda_i2 \sqrt\lambda_\lambda_2^\lambda_k\right\|Y-\hat\mu \|_2 where λ4=ch4(T),i=1,2,…,n,λ1≥…≥λn≥0.k=Rank(X), \left\|\alpha^\prime\right\|_2=\left(\alpha^\prime \alpha^\prime\right)^\frac12 and the upper bounds to \left\|\operatornamecov(\hat\mu)-\operatornamecov\left(\mu^*\right)\right\|_n, \quad\left\|P T^2 P-\left(P P_2 r P\right)^2\right\| and \left\|_i\left(\cot ^+\left(\mu^*\right)\right)^\frac12 \operatornamecov(\hat\mu)\left(\cot ^+\left(\mu^*\right)\right)^\frac12\right\|_2, where \forall A \|_0=\left(\operatornametr\left(A^\prime A\right)^\frac\pi2\right)^\frac16 \cdot \delta \geqslant 1.
-
-