The Superiorities of Simultaneous Empirical Bayes Estimation for the Regression Coefficients and Error-Variance in Linear Model
-
-
Abstract
When the hyperparameters of prior distribution are partly known in linear model, the simultaneous parametric empirical Bayes estimators (PEBE) of the regression coefficients and error variance are constructed. The superiority of PEBE over the least squares estimator (LSE) of regression coefficients is investigated in terms of the the mean square error matrix (MSEM) criterion, and the superiority of PEBE over LSE of the error variance is discussed under the the mean square error (MSE) criterion. Finally, when all hyperparameters are unknown, the PEBE of regression coefficients and error variance are reconstructed and the superiority of them over LSE under the MSE criterion are studied by simulation methods.
-
-