Variable Selection for Partially Linear Models via Adaptive LASSO
-
-
Abstract
Partially linear model is a class of commonly used semiparametric models, this paper focus on variable selection and parameter estimation for partially linear models via adaptive LASSO method. Firstly, based on profile least squares and adaptive LASSO method, the adaptive LASSO estimator for partially linear models are constructed, and the selections of penalty parameter and bandwidth are discussed. Under some regular conditions, the consistency and asymptotic normality for the estimator are investigated, and it is proved that the adaptive LASSO estimator has the oracle properties. The proposed method can be easily implemented. Finally a Monte Carlo simulation study is conducted to assess the finite sample performance of the proposed variable selection procedure, results show the adaptive LASSO estimator behaves well.
-
-