KONG Fanchao, TANG Qihe, . Theorems on Convergence of Sums of Independent Random Variables under the Condition $\liminf _{\boldsymbol{n} \rightarrow \infty} \mathrm{P}\left(\boldsymbol{X}_{\boldsymbol{n}}=0\right)>0$[J]. Chinese Journal of Applied Probability and Statistics, 1999, 15(4): 402-410.
Citation: KONG Fanchao, TANG Qihe, . Theorems on Convergence of Sums of Independent Random Variables under the Condition $\liminf _{\boldsymbol{n} \rightarrow \infty} \mathrm{P}\left(\boldsymbol{X}_{\boldsymbol{n}}=0\right)>0$[J]. Chinese Journal of Applied Probability and Statistics, 1999, 15(4): 402-410.

Theorems on Convergence of Sums of Independent Random Variables under the Condition \liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0

  • Let Xnn≥ 1 be a sequence of independent random variables. Motivated by a conjecture of Erdos in probabilistic number theory, we assume \liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0 and investigate the a.s. convergence of sum for \sum_n=1^\infty X_n. In this paper, we obtain two "sufficient and necessary" conditions and one "sufficient" condition of the a.s. convergence of sum for \sum_n=1^\infty X_n. In particular, we have improved the related results in 3. 5.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return