LI Zhiqiang, . Distribution Convegence Rate of Continvous Random Variables Functions[J]. Chinese Journal of Applied Probability and Statistics, 1999, 15(3): 294-301.
Citation: LI Zhiqiang, . Distribution Convegence Rate of Continvous Random Variables Functions[J]. Chinese Journal of Applied Probability and Statistics, 1999, 15(3): 294-301.

Distribution Convegence Rate of Continvous Random Variables Functions

  • Suppose continuous random variables ξ1n,…ξrn are mutually independent and distributiuon convegence to ξ1,…,ξr and ηn=φ(ξ1n,…ξrn) are continuous random variables,Fξin(x),Fηn(x),Fξi(x),Fη(x) are the corresponding distribution functions. Under some conditions, we prove that supx|Fξn(x)-F*n(x)|≤d f c \sqrtn if supx|Fξin(x)-Fξi(x)|≤\fracL\sqrtn,where c and L are constants, i=1,… r. Especially whenφ(x1,…,xr)=x12+…+x or φ(x1,…,xr)=x12+…+xk2/x12+…+xr2 the result above is correct.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return