CHEN Zaifu, HE Yuanjiang. ε-REGENERATIVE PHENOMENA, p-α PAIRS AND MARKOV TRANSITION PROBABILITIES[J]. Chinese Journal of Applied Probability and Statistics, 1994, 10(1): 15-21.
Citation: CHEN Zaifu, HE Yuanjiang. ε-REGENERATIVE PHENOMENA, p-α PAIRS AND MARKOV TRANSITION PROBABILITIES[J]. Chinese Journal of Applied Probability and Statistics, 1994, 10(1): 15-21.

ε-REGENERATIVE PHENOMENA, p-α PAIRS AND MARKOV TRANSITION PROBABILITIES

  • Suppose that for each positive numbert, Et)andAt)are disjoint events. Let J1t),J2t)andJεt)denote Et),At) and Et)∪At).respectively LetJt,L)denote\bigcup_l \in L J_l(t),whereL∈ 1, 2, 3. If for any 00<t1﹤…<ti+g, we have P(Jt1,L1)…J(ti-1,Li-1)Eti)...J(ti+1,Li+1)…J(t i+g,Li+g)=P(Jt1,L1)…J(ti-1,Li-1)Eti))P(J(ti+1ti,Li+1)…J(ti+gti,Li+g),then(Et),At):t>0will be called ε-regenerative phenomenon and (pt),at)) the correspondingp-a pair, wherept)=P(Et)),at)=P(At)) Let \lim _t \rightarrow 0 p(t)=1. Then (pt),at)) is a p-apair if and only if there are Markovtransition functions Pt(·,·), standard state x, measurable set B, xB, such thatpt)=Pt,(x,x),at=Ptx,B); if and only if at) is continuous, pt) is a p-function (with canonical measure μ)1, and there is a measurable function gs) such that 0≤gs)≤μ(s, ∞ and a(t)=\int_0^t p(t-s) g(s) d s. The limits and products of p-a pairs are also p-a pairs. Some conditions for a p-a pair to be finite decomposable and to be indecompo-sable are given.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return