XU Xingzhong. The Linear Minimax Estimator of Mean Vector in Multivariate Statistics under Matrix Loss[J]. Chinese Journal of Applied Probability and Statistics, 1997, 13(4): 345-352.
Citation: XU Xingzhong. The Linear Minimax Estimator of Mean Vector in Multivariate Statistics under Matrix Loss[J]. Chinese Journal of Applied Probability and Statistics, 1997, 13(4): 345-352.

The Linear Minimax Estimator of Mean Vector in Multivariate Statistics under Matrix Loss

  • Let y1y2,…,yn be i.i.d., Ey1β,Cov(y1)=∑, where βRP and ∑ > 0 are unknown. We estimate β The class of estimation is L={∑i=1n Liyi:Li is a p-order constant matrix, i =1, 2,…, n. The loss function is L_V_1, V_2(\beta, \Sigma ; d)=\frac(d-\beta)(d-\beta)^\prime\operatornametr\left(q \Sigma V_1\right)+\beta^\prime V_2 \beta, whereV1,V2 are known. We study the minimaxity of a linear estimator of β inL .The main results are 1. When V2kV2k>0, the only Ⅰ-type linear minimax estimator of β inL is Y/(1+√k ),where Y=\barY=\frac1n \sum_i=1^n y_i.2. When V2kV2 is failed for all k >0, but V1V2V2V1, the Ⅰ-type linear minimax estimator of β in L dosn’t exist.3. When V1V2V2V1, the Ⅱ-type linear minimax estimator of β in L is(V11/2+V21/2)-1V11/2Y .These estimators constitute a set AY:A is symmatric and all latent roots of A belong to (0, l)when both V1 and V2 vary under subjection of V1V2V2V1.4. For general V1 and V2,(V11/2+V21/2)-1V11/2Y, is also a Ⅱ-type linear minimax estimator of β in L. These estimators constitute a set AY: all latent roots of A are real and belong to (0,1), and A only has linear element factors when both V1 and V2 vary
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return