YANG Ting, YANG Hu, . Ellipsoidal Restriction and Generalized Ridge Estimation[J]. Chinese Journal of Applied Probability and Statistics, 2003, 19(3): 232-236.
Citation: YANG Ting, YANG Hu, . Ellipsoidal Restriction and Generalized Ridge Estimation[J]. Chinese Journal of Applied Probability and Statistics, 2003, 19(3): 232-236.

Ellipsoidal Restriction and Generalized Ridge Estimation

  • Consider the linear regression model \undersetn \times 1Y=\undersetn \times q_q \times 1X+\undersetn \times 1e, \quad e \sim\left(0, \sigma^2 W\right), W>0, \operatornamerank(X)=q. In term of the approximate multicollinearity of matrix X, paper constrains the regression coefficient β and obtains generalized ridge estimation of the linear model’s parameter under the ellipsoidal restriction. Then discusses its properties, such as biased property, and MDE - superiority comparisons between generalized ridge estimation and generalized least squares estimation.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return