FANG Xiangzhong. Asympotic Properties of MLE of the Parameters for Point Processes[J]. Chinese Journal of Applied Probability and Statistics, 2002, 18(2): 113-118.
Citation: FANG Xiangzhong. Asympotic Properties of MLE of the Parameters for Point Processes[J]. Chinese Journal of Applied Probability and Statistics, 2002, 18(2): 113-118.

Asympotic Properties of MLE of the Parameters for Point Processes

  • Suppase Nt), t≥0 is a point process on probability space (Ω,F,Pθ) with intensity λθ,t), where θ=(θ1,…’,θm) is unknown parameter. Let θ*=(θ1*,… θ*)' be the true value of θ. The observed data areNt), 0 ≤tT. Denote the MLE of θ as T. In this paper we give that, under some conditions, the MLE of θ is consistent, and \beginaligned & \limsup _T \rightarrow \infty \frac\lambda_\min (T)\left\|\widehat\theta_T-\theta^*\right\|\sqrt2 h^2(T) \mathrmLLg\left(h^2(T)\right) \stackrel\text a.s. \leq 1 \\ & \limsup _T \rightarrow \infty \fracc \lambda_\max (T)\left\|\widehat\theta_T-\theta^*\right\|\sqrt2 h^2(T) \mathrmLLg\left(h^2(T)\right) \stackrel\text a.s. \geq 1\endaligned where c > 0 and hT) are obtained from λt,θ*), λmaxT)(λminT)) is the maximum (minimum) among theeigenvalues of the information matrix.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return