Asympotic Properties of MLE of the Parameters for Point Processes
-
-
Abstract
Suppase N(t), t≥0 is a point process on probability space (Ω,F,Pθ) with intensity λ(θ,t), where θ=(θ1,…’,θm) is unknown parameter. Let θ*=(θ1*,… θm*)' be the true value of θ. The observed data areN(t), 0 ≤t≤T. Denote the MLE of θ as ^θT. In this paper we give that, under some conditions, the MLE of θ is consistent, and \beginaligned & \limsup _T \rightarrow \infty \frac\lambda_\min (T)\left\|\widehat\theta_T-\theta^*\right\|\sqrt2 h^2(T) \mathrmLLg\left(h^2(T)\right) \stackrel\text a.s. \leq 1 \\ & \limsup _T \rightarrow \infty \fracc \lambda_\max (T)\left\|\widehat\theta_T-\theta^*\right\|\sqrt2 h^2(T) \mathrmLLg\left(h^2(T)\right) \stackrel\text a.s. \geq 1\endaligned where c > 0 and h(T) are obtained from λ(t,θ*), λmax(T)(λmin(T)) is the maximum (minimum) among theeigenvalues of the information matrix.
-
-