WANG Jingfang. THE LIMIT DISTRIBUTIONS OF EMPIRICAL DISTRIBUTIONS OF RANDOM PROJECTION PURSUIT OF CONTINUOUS FORM CmGm(||X||)2 multiply fromi=1 to m |xi|2ri-1[J]. Chinese Journal of Applied Probability and Statistics, 1991, 7(3): 291-298.
Citation: WANG Jingfang. THE LIMIT DISTRIBUTIONS OF EMPIRICAL DISTRIBUTIONS OF RANDOM PROJECTION PURSUIT OF CONTINUOUS FORM CmGm(||X||)2 multiply fromi=1 to m |xi|2ri-1[J]. Chinese Journal of Applied Probability and Statistics, 1991, 7(3): 291-298.

THE LIMIT DISTRIBUTIONS OF EMPIRICAL DISTRIBUTIONS OF RANDOM PROJECTION PURSUIT OF CONTINUOUS FORM CmGm(||X||)2 multiply fromi=1 to m |xi|2ri-1

  • Let X= (x1, x2, …, xm), be a m-dimensional random vector, X1, X2, …, Xn subsamples from the population X, the m-dimensional random vector Z have the Nm(0, Im) distribution and Bm>0 be a sequence of real numbers. Let \hatF_n^Z / B m(x)=\frac1n \#\left\i: Z^\prime X_i / B_mri>0 then \hatF_n^2 B m(x) \xrightarrowP N\left(0, \sigma^2\right) or \hatF_n^Z / B m(x) \xrightarrowP \mathscrL\left(T_k\right),as n→∞, m→∞, where фTk) is the Student distrbution Tk with k degrees of freedom.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return