ZHENG Ming, . The Chung Law of the Iterated Logarithm for Locally Square Integrable Martingales[J]. Chinese Journal of Applied Probability and Statistics, 1998, 14(3): 250-257.
Citation: ZHENG Ming, . The Chung Law of the Iterated Logarithm for Locally Square Integrable Martingales[J]. Chinese Journal of Applied Probability and Statistics, 1998, 14(3): 250-257.

The Chung Law of the Iterated Logarithm for Locally Square Integrable Martingales

  • Let X = (Xt,t≥ 0) be a locally square integrable martingale with Xo = 0. The predictable quadratic variation of X is<X,Xt. Using the strong approximation result for continuous time semimartignales, we prove that if the jumps of X satisfy certain assumptions, the Chung law of the iterated logarithm for the locally square integrable martingale holds,that is \mathrmP\left(\liminf _t \rightarrow \infty \frac\sup _0 \leq s \leq t\left|X_s\right|\left(\langle X, X\rangle_t / \log \log (X, X\rangle_t\right)^1 / 2=\frac\pi\sqrt8\right)=1.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return