ON THE CONVERGENCE RATE OF THE NEAREST NEIGHBER REGRESSION FUNCTION ESTIMATOR
-
Graphical Abstract
-
Abstract
Let(X,Y),(X1,Y1),(X2,Y2),…be a sequence of iid.Rd×R1-valued random vectors with E|Y|<∞.This paper investigats the pointwise strong convergence rate of the nearest neighbor regression function estimator and its iterated logarithm-type rate is obtained,i. e,,under certain conditions \limsup _n \rightarrow \infty \frac\left|m_n(x)-m^i \cdot c\right| i\left(2 \sum_j=1^k \nu_m^2 \log \log n\right)^1 / 2 \leqslant(2 \operatornamevar(Y \mid X=x))^1 / 2 a. в.
-
-