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Abstract: Let {Xn, n > 1} be a sequence of i.i.d. random variables with absolutely continuous

distribution function. Denote the record times and the associated counting process of {Xn, n > 1}
by {L(n), n > 1} and {µ(n), n > 1}, respectively. In this paper, we obtain the exact asymptotics

in complete moment convergence of {L(n), n > 1} and {µ(n), n > 1}.
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§1. Introduction

Let {X,Xn;n ∈ N} be a sequence of i.i.d. random variables with continuous distri-

bution function. And define the partial sum Sn =
n∑
k=1

Xk, n ∈ N. It is well-known that,

given 0 < p < 2 and r > p,

∞∑
n=1

nr/p−2P(|Sn| > εn1/p) <∞, ε > 0, (1)

if and only if E|X|r < ∞, and when r > 1, E[X] = 0. For r = 2 and p = 1, Hsu and

Robbins [1] first proved the sufficiency. Later, Erdős [2, 3] obtained the necessity. For the

special case r = p = 1, we refer to [4]. Baum and Katz [5] obtained the general case.
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Note that the sum in (1) tends to infinity as ε↘ 0. Hence finding the precise rate at

which this occurs becomes an interesting topic. In fact, it has been studied extensively.

For example, Heyde [6] proved that

lim
ε↘0

ε2
∞∑
n=1

P(|Sn| > εn) = E[X2],

if and only if E[X] = 0 and E[X2] < ∞. For more information on this topic, we refer to

[7–12] and so on.

On the other hand, based on (1), another interesting topic is to study the complete

moment convergence. Let p > 1, α > 1/2, pα > 1 and E{|X|p + |X| ln(1 + |X|)} < ∞.

Under the assumption that E[X] = 0, Chow [13] obtained that for any ε > 0,
∞∑
n=1

n(p−1)α−2E
{

max
16j6n

|Sj | − εnα
}

+
<∞,

where {x}+ = max{x, 0}.
In this paper, the main aim is to study the exact asymptotics in complete moment

convergence for the record times and the associated counting process. Hence, we first

introduce the corresponding definitions.

Let {X,Xn; n ∈ N} be a sequence of i.i.d. random variables with absolutely contin-

uous distribution function. Set L(1) = 1, and recursively,

L(n) = min{k > L(n− 1) : Xk > XL(n−1)}, n > 2.

We call {L(n), n > 1} as the record times of {Xn, n > 1}. The associated counting process

{µ(n), n > 1} is defined by

µ(n) = max{k : L(k) 6 n}.

Many results about {µ(n)} have been established. For example, see [14–16] and so

on. Here, we should point out the recent results obtained by [17]. The results read as

follows.

Theorem 1 (i) Let r > 0, then

lim
ε↘
√

2r

√
ε2 − 2r

∞∑
n=9

(ln lnn)r−1

n lnn
P
{
|µ(n)− lnn| > ε

√
lnn ln ln lnn

}
=

√
2

r
.

(ii) When r = 0, we have

lim
ε↘0

1

− ln ε

∞∑
n=3

1

n lnn ln lnn
P
{
|µ(n)− lnn| > ε

√
lnn ln lnn

}
= 2

and

lim
ε↘0

ε2
∞∑
n=9

1

n lnn ln lnn
P
{
|µ(n)− lnn| > ε

√
lnn ln ln lnn

}
= 1.
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Motivated by the above results, we aim to investigate the exact asymptotics in com-

plete moment convergence for {L(n), n ∈ N} and {µ(n), n ∈ N} in this work. The rest of

this paper is organized as follows. In Section 2, we list some basic facts about the record

times and the associated counting process. Furthermore, we obtain the exact asymptotics

in complete moment convergence for the associated counting process. Section 3 is devoted

to getting the exact asymptotics for the record times.

Throughout this paper, we use C to denote an positive constant whose value may vary

from line to the next. The notation f(x) ∼ g(x) means that f(x)/g(x)→ 1 as x→∞.

§2. Exact Asymptotics for the Counting Process

In this section, we study the exact asymptotics for the counting process. In order to

reach our aim, we first recall some basic facts about the record times and the counting

process. Let

Ik =

1, if Xk is a record,

0, otherwise,

then µ(n) =
n∑
k=1

Ik, n > 1. It follows from [15] that, as n→∞,

(i) mn = Eµ(n) =
n∑
k=1

1/k = lnn+ γ + o(1),

(ii) Varµ(n) =
n∑
k=1

(1− 1/k)/k = lnn+ γ − π2/6 + o(1),

(iii) µ(n)/ lnn→ 1 a.s.,

(iv) [µ(n)− lnn]/
√

lnn
d−→ N(0, 1),

(v) lnL(n)/n→ 1 a.s.,

(vi) (lnL(n)− n)/
√
n

d−→ N(0, 1),

where γ = 0.577 · · · , is the Euler’s constant.

Now, we state the main results of this section. We have

Theorem 2 Given r > 0,

lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∞∑
n=9

(ln lnn)r−1

n(lnn)3/2
E
{
|µ(n)− lnn| − ε

√
lnn ln ln lnn

}
+

=
1

r
√

2π
.
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Theorem 3 When r = 0,

lim
ε↘0

1

− ln ε

∞∑
n=3

1

n(lnn)3/2 ln lnn
E
{
|µ(n)− lnn| − ε

√
lnn ln lnn

}
+

= 2E|N |, (2)

and

lim
ε↘0

ε2
∞∑
n=9

1

n(lnn)3/2 ln lnn
E
{
|µ(n)− lnn| − ε

√
lnn ln ln lnn

}
+

=
1

3
E|N |3. (3)

Remark 4 Zang and Fu [18] established the exact asymptotics in complete moment

convergence for the counting process. However, they dealt with the case of large deviation,

i.e., lnn, and in this paper, we investigate the case of moderate deviation, i.e.,
√

lnn ln lnn,

in (2), and the case of small deviation, i.e.,
√

lnn ln ln lnn, in Theorem 2 and the equaiton

(3).

Remark 5 When we checked the proof of this article, we found by chance that some

similar results were obtained by [19] and [20]. They used the truncated method to estimate

the remainder terms. However, in the proofs of our results, we mainly rely on the estimate

of ∆n, which is given by Lemma 9.

In order to prove Theorem 2, we need some technical results. We have the following

propositions.

Proposition 6 Given r > 0, we have

lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∞∑
n=9

(ln lnn)r−1

n lnn
E
{
|N | − ε

√
ln ln lnn

}
+

=
1

r
√

2π
.

Before we prove it, we need a technical lemma, which comes from [21].

Lemma 7 For large enough x,

Ψ(x) = 2P(N > x) ∼ 2√
2πx

e−x
2/2,

where Ψ(x) = P(|N | > x) with N being the standard normal random variable.

Next, we prove the Proposition 6.

Proof of Proposition 6 For convenience, let

Γ = lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∞∑
n=9

(ln lnn)r−1

n lnn
E
{
|N | − ε

√
ln ln lnn

}
+
.

Note that

Γ = lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∫ ∞
9

(ln lnx)r−1

x lnx

∫ ∞
ε
√

ln ln lnx
Ψ(y)dydx. (4)
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Let t = ε
√

ln ln lnx. Then (4) is equivalent to

Γ = lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∫ ∞
ε
√

ln ln ln 9

2t

ε2
ert

2/ε2
∫ ∞
t

Ψ(y)dydt

= lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∫ ∞
ε
√

ln ln ln 9
Ψ(y)

∫ y

ε
√

ln ln ln 9

2t

ε2
ert

2/ε2dtdy

= lim
ε↘
√

2r

1

−r ln(ε2 − 2r)

∫ ∞
ε
√

ln ln ln 9
Ψ(y)(ery

2/ε2 − er ln ln ln 9)dy

= lim
ε↘
√

2r

1

−r ln(ε2 − 2r)

∫ ∞
ε
√

ln ln ln 9
Ψ(y)ery

2/ε2dy. (5)

(5) and Lemma 7 imply that

Γ = lim
ε↘
√

2r

1

−r ln(ε2 − 2r)

∫ ∞
ε
√

ln ln ln 9

2√
2πy

e−(ε2−2r)y2/(2ε2)dy.

Let s = (ε2 − 2r)y2/(ε2 ln ln ln 9). Then

Γ = lim
ε↘
√

2r

1

−r
√

2π ln(ε2 − 2r)

∫ ∞
ε2−2r

1

s
e−s ln ln ln 9/2ds =

1

r
√

2π
.

We complete the proof of Proposition 6. �

Proposition 8 Let

A(n) =
∣∣E{|µ(n)− lnn| − ε

√
lnn ln ln lnn

}
+
−
√

lnnE
{
|N | − ε

√
ln ln lnn

}
+

∣∣.
Then, for any r > 0,

lim
ε↘
√

2r

1

− ln(ε2 − 2r)

∞∑
n=9

(ln lnn)r−1

n(lnn)3/2
A(n) = 0.

In order to prove it, we also need a technical lemma. Before we state it, we first

introduce the following notation. For any x > 0, let

∆n = sup
x

∣∣∣P(|µn − lnn| > x)− P
(
|N | > x√

lnn

)∣∣∣. (6)

Following [22], we have

Lemma 9

∆n 6
3.8√
lnn

, ∀n > 2,

where ∆n is defined by (6).
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Next, we prove the Proposition 8.

Proof of Proposition 8 In order to prove the proposition, we only need to prove

that, for any r > 0,
∞∑
n=9

(ln lnn)r−1

n(lnn)3/2
A(n) <∞.

For convenience, let

Λ =
∞∑
n=9

(ln lnn)r−1

n(lnn)3/2
A(n).

Note that

Λ =
∞∑
n=9

(ln lnn)r−1

n(lnn)3/2

∣∣∣ ∫ ∞
ε
√

lnn ln ln lnn
P(|µ(n)− lnn| > x)dx

−
√

lnn

∫ ∞
ε
√

ln ln lnn
P(|N | > t)dt

∣∣∣.
By using the change of variable u = x/

√
lnn, we have

Λ =
∞∑
n=9

(ln lnn)r−1

n lnn

∣∣∣ ∫ ∞
0

[
P
(∣∣∣µ(n)− lnn√

lnn

∣∣∣ > u+ ε
√

ln ln lnn
)

− P
(
|N | > u+ ε

√
ln ln lnn

)]
du
∣∣∣

6
∞∑
n=9

(ln lnn)r−1

n lnn

∫ ∞
0

∣∣∣P(∣∣∣µ(n)− lnn√
lnn

∣∣∣ > u+ ε
√

ln ln lnn
)

− P
(
|N | > u+ ε

√
ln ln lnn

)∣∣∣du
=:

∞∑
n=9

(ln lnn)r−1

n lnn
(I1 + I2),

where

I1 =

∫ 1/
√

∆n

0

∣∣∣P(∣∣∣µ(n)− lnn√
lnn

∣∣∣ > u+ ε
√

ln ln lnn
)
− P

(
|N | > u+ ε

√
ln ln lnn

)∣∣∣du
and

I2 =

∫ ∞
1/
√

∆n

∣∣∣P(∣∣∣µ(n)− lnn√
lnn

∣∣∣ > u+ ε
√

ln ln lnn
)
− P

(
|N | > u+ ε

√
ln ln lnn

)∣∣∣du.
By Lemma 9, we have

I1 6
√

∆n 6
C

(lnn)1/4
. (7)

Note that
µ(n)− lnn√

lnn

d−→ N(0, 1).

Thus, Lemma 7 implies that, as u→ +∞,

P
(∣∣∣µ(n)− lnn√

lnn

∣∣∣ > u) 6 C

u
e−u

2/2 (8)
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and

P(|N | > u) 6
C

u
e−u

2/2. (9)

On the other hand, we have∫ ∞
y

1

u
e−u

2/2du 6
1

y
, as y → +∞. (10)

Combining (8), (9) and (10), we get

I2 6
∫ ∞

1/
√

∆n

C

u
e−u

2/2du 6 C
√

∆n 6
C

(lnn)1/4
. (11)

Thus, by (7) and (11), we have

Λ 6
∞∑
n=9

(ln lnn)r−1

n(lnn)5/4
<∞. (12)

We complete the proof of Proposition 8. �

Remark 10 By (12), Λ is also finite when r 6 0.

Now we stand at a point where we can prove the theorem 2.

Proof of Theorem 2 Theorem 2 follows from Propositions 6 and 8, and the

triangle inequality directly. �

Next, we prove Theorem 3. Similar to the proof of Theorem 2, in order to prove it,

we also need the following technical propositions.

Proposition 11

lim
ε↘0

1

− ln ε

∞∑
n=3

1

n lnn ln lnn
E
{
|N | − ε

√
ln lnn

}
+

= 2E|N |, (13)

and

lim
ε↘0

ε2
∞∑
n=9

1

n lnn ln lnn
E
{
|N | − ε

√
ln ln lnn

}
+

=
1

3
E|N |3. (14)

Proof The proof of Proposition 11 is similar to that of Proposition 6. In fact, by

some calculations, we have

lim
ε↘0

1

− ln ε

∞∑
n=3

1

n lnn ln lnn
E
{
|N | − ε

√
ln lnn

}
+

= lim
ε↘0

1

− ln ε

∫ ∞
3

1

x lnx ln lnx

∫ ∞
ε
√

ln lnx
Ψ(y)dydx

= lim
ε↘0

2

− ln ε

∫ ∞
ε
√

ln ln 3
(ln y − ln ε− ln

√
ln ln 3 )Ψ(y)dy

= 2E|N |,



264 Chinese Journal of Applied Probability and Statistics Vol. 33

and

lim
ε↘0

ε2
∞∑
n=9

1

n lnn ln lnn
E
{
|N | − ε

√
ln ln lnn

}
+

= lim
ε↘0

ε2
∫ ∞

9

1

x lnx ln lnx

∫ ∞
ε
√

ln ln lnx
Ψ(y)dydx

= lim
ε↘0

∫ ∞
ε
√

ln ln ln 9
y2Ψ(y)dy =

1

3
E|N |3,

where we used the fact that

lim
ε↘0

2

− ln ε

∫ ∞
ε
√

ln ln 3
ln yΨ(y)dy = 0.

We complete the proof of Proposition 11. �

Proposition 12 Let

B(n) =
∣∣E{|µ(n)− lnn| − ε

√
lnn ln lnn

}
+
−
√

lnnE
{
|N | − ε

√
ln lnn

}
+

∣∣.
Then

lim
ε↘0

1

− ln ε

∞∑
n=3

1

n(lnn)3/2 ln lnn
B(n) = 0.

Proposition 12 can be proved in the same way as the proof of Proposition 8. We omit

the details here.

Next, we prove Theorem 3.

Proof of Theorem 3 It follows from (13), Proposition 12 and the triangle inequal-

ity that (2) holds. On the other hand, by (14), Remark 10 and the triangle inequality, we

obtain (3). The proof of Theorem 3 is finished. �

§3. Exact Asymptotics for the Record Times

In this section, we study the precise asymptotics for the record times {L(n) : n ∈ N}.
The following results for record times can be proved in the same way as the proof of

Theorem 2 with the estimate given by Theorem 4 in [22].

Theorem 13 Given δ > −1 and p > 0, we have

lim
ε↘0

εp(δ+1)
∞∑
n=3

nδE
{
| lnL(n)− n| − εn1/p+1/2

}
+

=
E|N |pδ+p+1

p(δ + 1)(pδ + p+ 1)
.

Theorem 14 Given δ > −1, we have

lim
ε↘0

ε2(δ+1)
∞∑
n=3

(lnn)δ

n3/2
E
{
| lnL(n)− n| − ε

√
n lnn

}
+

=
E|N |2δ+3

(δ + 1)(2δ + 3)
.
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Theorem 15 Given δ > 0, we have

lim
ε↘
√

2δ

1

− ln(ε2 − 2δ)

∞∑
n=3

(lnn)δ−1

n3/2
E
{
| lnL(n)− n| − ε

√
n ln lnn

}
+

=
1

δ
√

2π
.

Remark 16 Theorem 13 deals with the exact asymptotics in complete moment con-

vergence of large deviation for {L(n), n > 1}, while Theorems 14 and 15 consider the mod-

erate deviation and small deviation, respectively.
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