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Abstract: Interval-censored failure time data are a general type of failure time or time-to-event

data where the failure time of interest is known or observed only to lie in an interval or window

instead of being observed exactly. They often occur in many fields, including demographical stud-

ies, epidemiological studies, medical or public health research and social science, and in different

forms. A common and general set-up that naturally yields interval-censored data is the study

with longitudinal or periodical follow-ups such as many clinical trials or observation studies. In

this paper, after some brief discussion about the background and some commonly used models,

we will review some recent advances, mainly during about last five years, on several important

topics related to regression analysis as well as some issues that need more research in the analysis

of interval-censored data.
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§1. Introduction

Interval-censored failure time data are a general type of failure time or time-to-event

data where the failure time of interest is known or observed only to lie in an interval or

window instead of being observed exactly. They often occur in many fields, including de-

mographical studies, epidemiological studies, medical or public health research and social

science, and in different forms. Although a large literature, including four books [1–4]

and several review papers [5–7], has been established for the analysis of interval-censored
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data, there still exist many open questions or more research is needed for many existing or

new issues. The main purpose of this paper is to discuss some recent advances on several

important topics related to regression analysis of interval-censored data but not to provide

a comprehensive review of the recent literature.

One area that routinely yields interval-censored failure time data is medical or public

health studies that entail periodic follow-ups such as clinical trials. In these situations, an

individual due for pre-scheduled observations for a clinically observable change in disease

or health status may miss some observations and return with a changed status. As a

consequence, we only know that the true event time is greater than the last observation

time at which the change has not occurred and less than or equal to the first observation

time at which the change has been observed to occur. That is, we only have an interval

that contains the real (but unobserved) time of occurrence of the change. Note that for the

situation described above, one still observes interval–censored data even no study subject

misses any pre-specified observation time or all individuals follow exactly the pre-specified

visit schedule, but it is apparent that the observed data would have simple and balanced

structures. On the other hand, in reality, this is clearly usually not the case and the

resulting data, the focus of this paper, can have much more complicated structures.

A more specific example of interval-censored failure time data is given by Alzheimer’s

disease neuroimaging initiative (ADNI), a longitudinal follow-up study that started in

2004 and was designed to develop clinical, imaging, genetic, and biochemical biomarkers

for the early detection and tracking of the Alzheimer’s disease (AD) [8–10]. In the study, the

participants were recruited across North America and followed and reassessed periodically

to track the pathology of the disease as it progresses. Also the participants have been

divided into three groups based on the levels of their cognitive conditions, cognitively

normal, mild cognitive impairment and AD. Among others, one variable of interest is

the time from the baseline visit date to the AD conversion. Since the participants were

only examined intermittently, the AD conversion thus cannot be observed exactly and is

known only to between the last examination time when the AD had not occurred and the

first examination time when the AD has already occurred. In other words, we only have

interval-censored data on the AD conversion.

Interval-censored failure time data occur in or can have different forms, including

case I, case II and case K interval-censored data which will be described in details in

the next section, and different forms mean different structures of the data. In particular,

they include right-censored data, the type of the failure time data discussed most in the

literature [11], as a special case. It is worth noting that the analysis of interval-censored data

is quite different from and much more challenging than that of right-censored data. One
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such difference is that for the latter, the counting process approach could be easily adopted,

which makes the analysis much easier, while this is not true for the former. A more

specific difference can be seen from their regression analyses under the proportional hazards

model to the described in the next section. For the latter, a simple partial likelihood

function could be conveniently derived and commonly used for inference about regression

parameters, while for the former, a more complicated full likelihood function has to be

used in general.

One fundamental and important feature of failure time data is censoring and differ-

ent formations of the data correspond to different censoring structures. In reality, one can

classify censoring as either independent censoring, or dependent or informative censoring,

meaning that the failure time of interest and the censoring mechanism are correlated [12, 13].

With the former, the analysis is usually performed conditional on the censoring process no

matter the formats of the data. In contrast, with the latter, the analysis can be very differ-

ent and also difficult as one usually has to make certain assumptions or model the censoring

mechanism. In particular, for right-censored data, the modeling is relatively easy partly as

only one variable is needed to describe the censoring, while for interval-censored data, as

discussed below, two or more variables are usually required to characterize the censoring

mechanism. As pointed out in the literature [3], in the presence of informative censoring,

the analysis that ignores it may result in biased results or misleading conclusions.

The remainder of the paper is organized as follows. After a brief discussion of different

data structures and some commonly used models in Section 2, we will first discuss some

recent advances on regression analysis of univariate interval-censored failure time data with

time-dependent covariates or in the presence of a cured subgroup in Section 3. Section

4 will also consider univariate interval-censored data as in Section 3 but with dependent

or informative censoring, and Section 5 will discuss some recent advances on regression

analysis of multivariate and clustered interval-censored data. Case-cohort studies are

commonly used to reduce the cost on the collection of covariate information and Section 6

will review some recently developed analysis methods for them that yield interval-censored

data. Variable selection has recently attracted a great deal of attention and will be the

focus in Section 7 when one faces interval-censored data. At the end of each section,

some directions for future research will be discussed, and Section 8 will conclude with

some remarks and a brief discussion on several other topics, including the analyses of

truncated and/or doubly interval-censored data and the analysis of interval-censored data

with missing covariates. As mentioned above, throughout the review, we will mainly focus

on the advances during about last five years and one can find more references from the

cited references. Also except Section 4 or unless specifically stated, we will assume that



630 Chinese Journal of Applied Probability and Statistics Vol. 37

interval censoring is non-informative.

§2. Models and Formulations of Interval-Censored Data

In this section, we will first briefly describe several commonly used regression models

for the analysis of failure time data, including the Cox or proportional hazards model, the

additive hazards model and the linear transformation model. Then the data structures

will be discussed for the types of interval-censored data commonly seen in the literature.

Consider a failure time study and let T and X denote the failure time of interest

and a vector of covariates, respectively. In this section, for simplicity, we will assume that

X is time-independent. For the analysis of failure time data, without doubt, the Cox

proportional hazards model [14] is the most commonly used one and has the form

λ(t |X) = λ0(t) exp(β′X) (1)

with respect to the hazard function of T given X. In the above, λ0(t) denotes an unknown

baseline hazard function and β the vector of unknown regression parameters. A main

advantage of this model is its simplicity and the availability of a partial likelihood function

for right-censored data. On the other hand, as pointed out in the literature, it has some

disadvantages including the proportionality assumption. Also it is worth noting that the

partial likelihood approach is no longer available for regression analysis of interval-censored

data.

Another commonly used model for regression analysis of failure time data is the

additive hazards model given by

λ(t |X) = λ0(t) + β′X (2)

again in terms of the hazard function of T given X. Here λ0(t) and β are defined as in

model (1). Note that unlike model (1) which models the multiplicative effects of covariates,

model (2) considers the additive effects, which can be more interesting in the fields like

social science. In the case that one is more interested in the covariate effect on the

cumulative distribution function (CDF), one may consider the proportional odds model

given by

ln
[ F (t |X)

1− F (t |X)

]
= h(t) + β′X. (3)

In the above, F (t |X) denotes the CDF of the failure time T given covariates X, h(t) an

unknown monotone-increasing function, also referred to as the baseline log odds, and β

represents a vector of regression parameters as in models (1) and (2).
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It is apparent that the three models (1) – (3) described above are all specific models

in terms of the functional form of the effects of covariates. Sometimes one may prefer a

model that gives more flexibility, and one such model is the linear transformation model

that can be expressed as

Λ(t |X) = G(Λ0(t) exp(β′X)) (4)

in terms of the cumulative hazard function of T given X. Here G is a specific, strictly

increasing transformation function, Λ0(t) an unknown increasing function and β defined

as above. It is easy to see that the model above gives different models depending on the

specification of the transformation function G. For example, the choices of G(x) = x and

G(x) = ln(1+x) give the proportional hazards model (1) and the proportional odds model

(3), respectively.

A main advantage of linear transformation model (4) is their flexibility as they include

many commonly used models as special cases as described above. Also it is well-known

that sometimes an individual model such as the proportional hazards model may not fit

data well and in contrast, the class of model (4) can allow for different types of covariate

effects. In addition, model (4) can be rewritten as

ln Λ0(T ) = −β′X + ε, (5)

where ε denotes an error term with the distribution function 1−exp[−G(exp(x))]. Thus the

regression parameter β can also be interpreted as the covariate effect on a transformation

of the failure time T .

In reality, there usually exist several types of interval-censored failure time data or

several formulations are commonly used in the literature [3]. Among them, an important

type is case I interval-censored data, also often referred to as current status data, meaning

that each subject is observed only once for the occurrence of the failure event of interest.

In consequence, the failure time T is either left- or right-censored and the observation on a

study subject has the form {C, I(T 6 C)}, where C represents the observation time. One

type of studies that usually produce current status data is cross-sectional studies, which

are commonly used in, for example, demographical studies among others.

Corresponding to case I interval-censored data, another formulation for interval-

censored data that is often seen in the literature is case II interval-censored data, which

assume that there exist two observation times for each study subject. For the situation,

the observation has the form {U, V, δ1 = I(T < U), δ2 = I(U 6 T < V )} with U < V ,

where U and V denote the two observation times. A more general formulation or type

of interval-censored data are case K interval-censored data, meaning that there exists a
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sequence of observation times for each subject. For the case, the data have the form

{K, U0 < U1 < · · · < UK , δk = I(Uj−1 < T 6 Uj); j = 1, 2, · · · ,K}, where K denotes the

number of observation times with the Uj ’s being the observation times. In practice, both

K and the Uj ’s can be subject-dependent, and it is easy to see that many observation

schemes such as these commonly used in medical follow-up or longitudinal studies can be

naturally represented by this formulation.

The formulation that is used most to describe interval-censored data in practice is

perhaps I = (L,R] with T ∈ I, which will be referred to as general interval-censored

data below. Under this formulation, it is easy to see that case I interval-censored data

correspond to the situation where either L = 0 or R =∞, while right-censored data mean

either L = R or R = ∞ for all study subjects. Also it is apparent that both case II and

case K interval-censored data can be reduced to this format as often happened in reality.

§3. Analysis of Univariate Interval-Censored Data

In this section, we will discuss some recent advances on regression analysis of univari-

ate interval-censored failure time data with the focus on the situations with the existence

of time-dependent covariates or a cured subgroup. To distinguish the difference between

time-independent and time-dependent covariates, we will write the time-dependent covari-

ate as X(t) in the following.

1) Analysis with Time-Dependent Covariates

In the presence of time-dependent covariates, instead of modeling the covariate effect

on the hazard function like models (1) and (2), it is usually more convenient to model the

covariate effect on the cumulative hazard function. Also instead of model (4), one may

consider the following form

Λ(t |X) = G
(∫ t

0
exp[β′X(s)]dΛ0(s)

)
(6)

for the transformation model. Under the formulation above, a commonly used class of

frailty-induced transformations is

G(x) = − ln
[ ∫ ∞

0
exp(−xt)f(t)dt

]
, (7)

where f(t) is the density function of a frailty variable with the support [0,∞). By set-

ting f(t) to be the gamma density with mean 1 and variance γ, one will get G(x) =
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γ−1 ln(1 + γx), the class of logarithmic transformations, and it will give the class of Box-

Cox transformations G(x) = [(1 + x)γ − 1]/γ if letting f(t) to be the positive stable

distribution with the parameter γ < 1. It is easy to see that when covariates are time-

independent, model (6) reduces to models (4) and (5).

For estimation of the effects of time-dependent covariates, two approaches are com-

monly used. One is the marginal maximum likelihood approach and the other is the joint

modeling approach. To be more specific about them, consider a failure time study that

consists of n independent subjects and in which for each subject, there exists a sequence of

observation times denoted by Ui0 = 0 < Ui1 < Ui2 < · · · < UiKi . Also let the Ti’s denote

the failure times of interest and assume that the observed data have the form O = {Oi =

(Ki, Uij , Xi(t)I(t 6 UiKi), δij = I(Ui,j−1 < Ti 6 Uij)); j = 1, 2, · · · ,Ki, i = 1, 2, · · · , n}.
That is, we have case K interval-censored data. Furthermore, assume that the Ti’s fol-

low the transformation model (6). Then under the non-informative censoring assumption,

meaning that {K ′is, U ′ijs} are independent of the Ti’s given the covariates, the observed

likelihood function of β and Λ0 has the form

L(β,Λ0) =
n∏
i=0

Ki∏
j=0

{
exp

[
−G
(∫ Uij

0
eβ
′Xi(s)dΛ0(s)

)]
−exp

[
−G
(∫ Ui,j−1

0
eβ
′Xi(s)dΛ0(s)

)]}δij
.

(8)

For each i, let Li = max{Uij : Uij < Ti} and Ri = min{Uij : Uij > Ti}. Then (Li, Ri]

represents the smallest interval that brackets Ti and the likelihood function above can be

rewritten as

L(β,Λ0) =
n∏
i=0

{
exp

[
−G

(∫ Li

0
eβ
′Xi(s)dΛ0(s)

)]
−exp

[
−G

(∫ Ri

0
eβ
′Xi(s)dΛ0(s)

)]}
(9)

since for each i, only one δij equals to one with the others being zero. For estimation of β

and Λ0, the marginal approach maximizes the likelihood function above, and in particular,

Zeng et al. [15] investigated this approach with the use of the transformation given in (7).

Furthermore, they showed that the maximum likelihood estimators of regression parame-

ters are consistent and asymptotically efficient and normal. Also they developed a flexible

and computationally efficient EM algorithm following Wang et al. [12], who considered the

same problem but under model (1) with time-independent covariates.

The joint modeling approach treats the time-dependent covariates as longitudinal

processes and is usually preferred when there also may exist measurement errors on co-

variates. For this, one commonly used method is to model the failure time of interest

and the longitudinal covariate process jointly by using, for example, the latent variable
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approach and for the situation, under the Cox model, one may consider

Λ(t |X) =

∫ t

0
exp[β′X(s) +B(s)]dΛ0(s).

In the above, B(t) represents a function of some latent variables as well as the covariates

that can be observed both exactly and with measurement errors. Among others, Yi et

al. [16] developed a maximum likelihood estimation procedure under this framework and

provided a MCEM algorithm. Note that many methods have been developed in the

literature for joint analysis of longitudinal data and failure time data with either the

failure time or the longitudinal variable as the variable of interest. However, most of

them only focused on right-censored data on the failure time except Chen et al. [17]. One

major difference between the methods given in Chen et al. [17] and Yi et al. [16] is that the

former treats the failure time as the dropout or stopping variable and assumed that there

is no more observation after the dropout. In other words, it cannot give efficient or valid

estimation if there exist more observations after the failure time. In contrast, the latter

takes into account all observations and also the algorithm given in Yi et al. [16] is more

faster and stable than that given in Chen et al. [17].

In practice, similar to time-dependent covariates, it is apparent that covariate effects

or regression coefficients could be time-dependent or time-varying too. For the situation,

one could consider the models described above with replacing β by β(t), meaning that

the covariate effect may be different at different times. One example of such situations

is that the effect of a treatment on a disease may take some time to kick in and then

disappear after some time. Although many authors have discussed the situation for the

analysis of right-censored data, there exists little research for the analysis of interval-

censored data and more research on this is clearly needed. The fitting of interval-censored

data to crossing hazard models is another topic for which there does not seem to exist

much research except Zhang et al. [18].

2) Analysis in the Presence of a Cured Subgroup

In the standard or traditional failure time data analysis, a typical assumption is

that all subjects under study would eventually experience the failure event of interest if

the follow-up is sufficiently long. However, in some situations or reality, this assumption

may not hold as there may exist a portion of subjects who never experience or are non-

susceptible to the failure event of interest for various reasons. These individuals are usually

considered to be cured or immune from the failure event and referred to as long-term

survivors or cured subjects. To address the existence of a cured subgroup, two types of
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models or methods are commonly used, two-component mixture cure model approach and

non-mixture cure model approach. The former directly models the effects of covariates on

the cure rate of the population and the survival function of non-cured subjects through

two separate regression models, and a drawback of this is that it does not have the usual

survival model property for the whole population [19, 20]. In contrast, the latter assumes

that cured subjects have infinity survival time and uses a single model to describe the

survival function of the entire population [19]. Sometimes the latter model is also referred

to as the promotion time cure model [21].

Under the two-component mixture cure model, the failure time of interest T is usually

written as T = Y T ∗+(1−Y )∞, where T ∗ denotes the failure time of a susceptible subject

and Y indicates, by value 1 or 0, whether the study subject is susceptible or not. To

describe the effects of covariates, one could employ a regular failure time regression model

such as the model described above. For the effects of of covariates on the cure rate, the

following logistic model

p(X) = P(Y = 1 |X) =
exp(α0 + α′X)

1 + exp(α0 + α′X)
(10)

is commonly used, where α0 and α are unknown parameters. Note that sometimes the

covariates that affect the failure time of a susceptible subject and the cure rate may be

different and thus one may consider or use different covariates in the two models. Among

others, Ma [20] and Hu and Xiang [19] discussed this approach for the analysis of interval-

censored data. The former developed the maximum likelihood approach under models

(1) and (10) and the latter proposed a sieve maximum likelihood method under a model

similar to model (4) and model (10).

As mentioned above, instead of employing two separate two models in the mixture

cure model, the non-mixture cure model uses a single model to describe the survival

function of the entire population. Under the framework of the Cox model (1), it has the

form

S(t |X) = P(T > t) = exp
[
− F (t)eβ0+β′X

]
, (11)

where β0 and β are unknown coefficients and F is a completely unspecified cumulative

distribution function. It is easy to see that the model above inherits the proportional

hazards model structure for the whole population and thus regression parameters have

relatively appealing, easy interpretations. Also its value at infinity, exp[− exp(β0 + β′X)],

represents the proportion of cured subjects. Liu and Shen [22] derived the maximum like-

lihood estimation approach for fitting model (11) to interval-censored data and developed

an EM algorithm for the implementation of the approach.
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It is apparent that as model (1), model (11) may have some limitations and corre-

sponding to this, Li et al. [21] considered the following class of semiparametric transforma-

tion cure model

S(t |X) = exp
[
−G

(
F (t)eβ0+β′X

)]
, (12)

a generalization of model (4), where G and F are defined as above. For the observed

interval-censored data giving the likelihood function in (9), the new observed likelihood

function has the form

L(β0, β, F ) =
n∏
i=1

{
exp

[
−G

(
F (Li)e

β0+XT
i β
)]
− exp

[
−G

(
F (Ri)e

β0+XT
i β
)]}δi

× exp
[
−G

(
F (Li)e

β0+XT
i β
)]1−δi , (13)

where δi = I(Ri < ∞). For inference about model (12), Li et al. [21] developed the maxi-

mum likelihood estimation procedure under the transformation given in (7) and provided

an EM algorithm similar to that given in Wang et al. [12] and Zeng et al. [15].

In addition to those described above, other authors who investigated the analysis of

interval-censored data with a cured subgroup include Hu and Xiang [23], Kim and Jhun [24],

Lam et al. [25], Lam and Wong [26], Li and Ma [27], Liu et al. [28], Xiang et al. [29] and Zhou

et al. [30]. In particular, Hu and Xiang [23] considered a model that is same as model (11)

except replacing exp(β0 +β′X) by η(β0 +β′X) and Zhou et al. [30] discussed the use of the

generalized odds rate mixture cure model, where η is a known link function. Also Xiang

et al. [29] and Lam and Wong [26] discussed the same problem but for clustered interval-

censored data, and Liu et al. [28] considered the situation with mis-measured covariates.

There exist several directions for future research related to the topic discussed here.

One is that for most of the existing methods for both right-censored and interval-censored

data, model (10) is commonly used to model covariate effects on the cure rate. It is

apparent that sometimes it may not provide a reasonable fit or one may prefer a differ-

ent model and thus one would need to develop similar or different and new estimation

procedures. Also most of the methods described above apply only to time-independent

covariates and it is clear that it would be useful to generalize them to time-dependent

covariates or the situation that involves both time-dependent covariates and time-varying

regression coefficients.

§4. Analysis of Informatively Interval-Censored Data

As discussed in the literature and above, in the presence of informative censoring,

the analysis that ignores it would yield biased or even misleading estimation or results.
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For the situation, unlike the non-informative case where the analysis is usually performed

conditional on the censoring mechanism or observation process, one needs to model the

censoring mechanism or observation process together with the failure time of interest.

For this, two types of approaches are commonly used and they are the frailty or latent

variable-based approach and the copula model-based approach.

Consider a failure time study that gives case I interval-censored or current status

data. Let T , C and X be defined as above and assume that T and C may be correlated.

Under the framework of the Cox model and assuming that covariates may have effects on

C too, one may model the covariate effects on T and C as

λ(t |X, b) = λ0(t) exp(β′X + b), (14)

and

λc(t |X, b) = λc0(t) exp(γ′X + b), (15)

respectively, in terms of the hazard function. In the above, λ0(t) and λc0(t) denote the

baseline hazard functions, β and γ are regression parameters as defined in model (1), and

b is a latent variable with mean zero, representing the association between T and C. By

assuming that T and C are independent given X and b, Li et al. [31] proposed a sieve

maximum likelihood estimation procedure and established the asymptotic properties of

the proposed estimators of regression parameters as well as developing a three-stage data

augmentation EM algorithm.

As discussed above, instead of the Cox model, sometimes one may prefer the additive

hazards model and for this, one may replace model (14) by

λ(t |X, b) = λ0(t) + β′X + b, (16)

and fit models (16) and (15) together to current status data. Li et al. [32] investigated this

method and also developed a sieve maximum likelihood estimation approach. Of course,

instead of model (14) or (16), one could also employ the linear transformation frailty model

Λ(t |X) = ebG(Λ0(t) exp(β′X)) (17)

together with model (15) [2]. In practice, one may consider other models such as model

(16) or (17) for the observation time variable C too.

The copula model-based approach provides another way to describe the correlation

between T and C by specifying the covariate effect on the marginal models for T and C.

To be specific, consider a failure time study that involves n independent subjects and gives

only current status data. Let the Ti’s and Xi’s be defined as above and Ci the potential
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observation time which may depend on Ti. Also suppose that there also exists a censoring

time ζi such as the administrative stop time and define C̃i = min(Ci, ζi), ∆i = I(Ci 6 ζi)

and δi = I(Ti 6 C̃i). Then the observed data have the form {Oi = (∆i, δi, C̃i, Zi), i =

1, 2, · · · , n}. Let FT and FC denote the marginal distributions of Ti and Ci, respectively,

and F the joint distribution of Ti and Ci. Then there exists a copula function Cα(u, v)

defined on I2 = [0, 1]× [0, 1] such that F (t, c) = Cα{FT (t), FC(c)}, where α represents the

relationship between Ti and Ci and is often referred to as the association parameter, and

Cα(u, 0) = Cα(0, v) = 0, Cα(u, 1) = u and Cα(1, v) = v. It follows that

P(T 6 t |C = c, Zi) =
∂Cα(u, v)

∂v

∣∣∣
u=FT (t),v=FC(c)

= mα{FT (t), FC(c)}

and the resulting likelihood function has the form

L(θ) =
n∏
i=1

{[(
mα{FT (c̃i), FC(c̃i)}

)δi(1−mα{FT (c̃i), FC(c̃i)}
)1−δifC(c̃i)

]∆i

×
[(
FT (c̃i)− Cα{FT (c̃i), FC(c̃i)}

)δi
×
(
1− FT (c̃i)− FC(c̃i) + Cα{FT (c̃i), FC(c̃i)}

)1−δi]1−∆i
}
. (18)

In the likelihood function above, fC denotes the marginal density function of the Ci’s and

θ represents all unknown parameters.

For estimation, it is natural to maximize the likelihood function given in (18) if

the copula function C and the association parameter α are known. Among others, Ma et

al. [33] considered this approach for the situation where the Ti’s and Ci’s follow models (14)

and (15) with b = 0, respectively, and developed a sieve maximum likelihood estimation

procedure. Also Zhao et al. [34], Du et al. [35], Xu et al. [36] and Xu et al. [37] developed the

same types of methods when instead model (14), the failure times of interest Ti’s follow

model (2), the generalized probit model, model (4) and the accelerated failure time model,

respectively. Furthermore, Cui et al. [38] investigated the same problem as Ma et al. [33]

and proposed a two-step estimation procedure that allows for the association parameter

α to be estimated instead of assuming to be known.

Note that one difference between case I and case II or K interval-censored data is that

for the former, only one variable C is needed to describe the censoring mechanism and in

contrast, more variables are needed for the latter. To describe the latent variable-based

approach for the analysis of case K interval-censored data with informative censoring, let

the Ti’s, Xi’s, Ki’s, Uij ’s and δij ’s be defined as above and define Ni(t) =
Ki∑
j=1

I(Uij 6 t), a

point process representing the observation process on subject i. To describe the covariate

effect, assume that the hazard function of Ti has the form

λ(t |Xi, bi) = λ0(t) exp(β′Xi + τbi), (19)



No. 6 DU M. Y., SUN J. G.: Statistical Analysis of Interval-Censored Failure Time Data 639

and Ni(t) is non-homogeneous Poisson process with the intensity function

λh(t |Xi, bi) = λ0h(t) exp(γ′Xi + bi). (20)

In the above, λ0(t) and β are defined as in model (1) or (14), τ and γ are scale and

vector parameters, respectively, λ0h(t) denotes a completely unknown continuous baseline

intensity function, and bi is a latent variable with mean zero. By assuming that Ti and

Ni are independent given Xi and bi, one can derive the likelihood function of β, τ and

Λ0(t) =
∫ t

0 λ0(s)ds as

L(β, τ,Λ0) =
n∏
i=1

{
Ki∏
j=1

{
exp

[
− Λ0(Ui,j−1)eβ

′Xi+τbi
]
− exp

[
− Λ0(Uij)e

β′Xi+τbi
]}δij

×
{

exp
[
− Λ0(UiKi)e

β′Xi+τbi
]}1−

Ki∑
j=1

δij
}

conditional on the Uij and bi’s. Wang et al. [39] discussed this approach and proposed a

two-step estimation procedure that first estimates model (20) and then model (19) based

on maximizing the likelihood above. Chen and Shen [40] investigated the same problem as

Wang et al. [39] and provided a maximum likelihood estimation procedure.

Following Wang et al. [39], Wang et al. [41] and Wang et al. [13] developed similar ap-

proaches under different models for the Ti’s. The former considered a generalization of

model (2) or (16) given by

λ(t |Xi, bi) = λ0(t) + β′Xi + τbi, (21)

while the latter proposed a generalization of model (4) given by

Λ(t |Xi, bi) = G(Λ0(t) exp(β′Xi + τbi)). (22)

Here τ and the bi’s are defined as in model (19). Note that one advantage of these methods

is that they do not require any assumption on or estimate the distribution of the latent

variables but they may lose some efficiency. To address this, Wang et al. [42] studied

the same problem under models (20) and (21) as Wang et al. [41] and proposed a sieve

maximum likelihood estimation approach.

By following the work on the use of the copula model-based approach for current

status data described above, Zhao et al. [43], Ma et al. [44] and Xu et al. [45] developed

similar methods for the informatively interval-censored data given by the formulation

I = (L,R]. More specifically, they considered the situation where the dependence between

T and the censoring mechanism can be characterized by the correlation between T and
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W = R − L, the length of the censoring interval. As Ma et al. [33] and others, they

developed the maximum likelihood estimation procedures when T follows model (2), (1)

or (4), respectively, W follows the Cox model, and the relationship between T and W can

be described by a known copula function. In addition to these mentioned above, Chen and

Shen [40], Liu et al. [46] and Zhao et al. [47] also discussed the analysis of interval-censored

data with informative censoring and especially, Liu et al. [46] considered the case when

there also exists a cured subgroup.

There exist several directions for future research on the analysis of informatively

interval-censored data. One is that in the method given in Wang et al. [39] and other

similar methods, the observation process Ni(t) has been assumed to be a non-homogeneous

Poisson process with the intensity function given in (20). It is apparent that sometimes

this may not be true and thus it would be useful to relax this assumption or generalize

the existing methods to more general situations. The copula model-based approach has

been commonly used for modeling the relationship among correlated variables in general

and for the analysis of informatively interval-censored data as discussed above. On the

other hand, for the latter, the focus has mainly been on two-dimensional copula models as

discussed above and it would be helpful to apply higher dimensional copula models to case

K or general, informatively interval-censored data although it may not be easy. Instead of

the two approaches discussed above, Zhu et al. [48] discussed a third approach, the marginal

approach that avoids to model the censoring process and employs the inverse probability

weighted technique, under the additive hazards model (2) and the linear transformation

model (4). Among others, one issue that clearly needs more research is the comparison to

the two approaches discussed above.

§5. Analysis of Multivariate and Clustered

Interval-Censored Data

Multivariate or clustered failure time data occur when a study involves more than

one failure times of interest that are correlated. The former usually means that the

number of correlated failure times is fixed, while the number of correlated failure times

may change from one cluster to another for the latter. For the analysis of these data,

one key component is how to describe or model the correlation among the correlated

failure times and for this, similar to the analysis of informatively interval-censored data,

two types of approaches, the latent variable-based and copula model-based approaches,

are commonly used. In this section, we will first discuss some recent developments on
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regression analysis of multivariate interval-censored data and then regression analysis of

clustered interval-censored data.

To describe the latent variable-based approach for the analysis of multivariate interval-

censored data, consider a failure time study consisting of K possibly correlated failure

events of interest. Let Tk denote the failure time of the kth event and Xk the vector of

covariates that may have effects on Tk, k = 1, 2, · · · ,K. Assume that there exists a latent

variable b with mean zero and given Xk and b, the cumulative hazard function Tk has the

form

Λk(t |Xk, b) = Gk(Λk(t) exp(β′Xk + b)). (23)

In the above, Gk and Λk are defined as G and Λ0 in model (4) but associated with

the kth failure event. Among others, Li et al. [49] discussed the model above and its

fitting to multivariate current status data. In particular, they considered the situation

where Gk has the form (7) and b follows a parametric distribution with an unknown

parameter and derived and established the maximum likelihood estimation procedure.

Wang et al. [50] and Zhou et al. [51] also considered model (23) with b following the gamma

distribution and K = 2. The former only focused on the situation where Gk(x) = x

and one observes bivariate current status data, and the latter developed a sieve maximum

likelihood estimation method with the use of Bernstein polynomials for the approximation

of the Λk’s for general bivariate interval-censored data. In addition, Liu and Qin [52]

investigated the same problem as Wang et al. [50] but under a class of probit models, and

Gao et al. [53] discussed the situation with time-dependent covariates.

The authors who recently discussed the copula model-based approach for the analysis

of multivariate interval-censored data include Hu et al. [54], Sun and Ding [55], Jiang and

Cook [56] and Li et al. [57]. In particular, Hu et al. [54] considered the fitting of model

(23) with b = 0 and Gk = x, the marginal Cox model, to bivariate current status data

and proposed a sieve maximum likelihood estimation approach with the use of Bernstein

polynomials for the approximation of both the Λk’s and the copula function. Note that

unlike other copula model-based methods discussed this paper, which usually assume that

the underlying copula function is known or has a parametric form, their method directly

estimates it. Sun and Ding [55] considered the analysis of bivariate general interval-censored

data arising from model (23) with b = 0 but under a class of two-parameter Archimedean

copula models. Furthermore, Jiang and Cook [56] and Li et al. [57] discussed the analysis of

bivariate current status data and general interval-censored data, respectively. The former

considered the situation where there exists a cured subgroup, while the latter employed a

three-dimensional vine copula model and investigated the case with informative censoring.
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For the analysis of clustered interval-censored data, as with the analysis of multi-

variate interval-censored data, one commonly used approach is the latent variable-based

method. To describe this, consider a failure time study involving n clusters of subjects.

Let Tij and Xij denote the failure time of interest of and a vector of covariates associated

with subject j in the ith cluster, respectively, j = 1, 2, · · · , ni, and assume that the Tij ’s

are independent for subjects in different clusters but dependent for those in the same

cluster. Also assume that one observes case II interval-censored data given by Uij and

Vij with Uij 6 Vij and there exists a latent variable bi such that given bi, the Tij ’s with

the same i are independent. Then the log likelihood function of all unknown parameters

denoted by θ has the form

l(θ) =
n∑
i=1

ln

∫ { ni∏
j=1

[S(Uij |Xij , bi; θ)− S(Vij |Xij , bi; θ)]
}
f(bi; η)dbi,

where S denotes the survival function of Tij given Xij and bi and f the density function

of the bi’s with the unknown parameter η. Among others, Li et al. [58] and Lee et al. [59]

discussed this approach under the following Cox frailty model

λ(t |Xij , bi) = λ0(t) exp(β′Xij + bi) (24)

and a model similar to model (23), respectively. Both proposed some sieve maximum

likelihood estimation procedures. Zeng et al. [60] also considered this approach under a

more general class of semiparametric transformation models, generalizations of models (6)

and (23). Furthermore the maximum likelihood estimation procedure proposed in Zeng et

al. [60] can apply to both time-dependent covariates and the combination of multivariate

and clustered interval-censored data.

Note that in the methods described above, the latent variable is assumed to follow a

known distribution with some unknown parameters that are estimated along with other

parameters. Sometimes one may not want to specify the distribution of the latent variable

or prefer to leave the correlation among the failure times of interest arbitrary. Among

others, Chen et al. [61] investigated this under the following additive hazards frailty model

λ(t |Xij , bi) = λ0(t) + β′Xij + bi, (25)

where the bi’s are defined as in model (24) but with an arbitrary distribution. For es-

timation, they provided a multivariate imputation method for general interval-censored

data. Zhao et al. [62] considered the same problem but under the linear transformation

model (4) and proposed a within-cluster-resampling estimation procedure. Furthermore

their method allows for the presence of informative cluster size, meaning that ni may be

related to Tij .
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Compared to univariate interval-censored data, the literature on multivariate and

clustered interval-censored data is clearly relatively limited partly due to more complicated

data structures. For example, there seems to exist little literature on regression analysis

of multivariate or clustered interval-censored data with time-dependent covariates and/or

time-varying regression coefficients or in the presence of informative interval censoring.

For the analysis of multivariate right-censored failure time data under the Cox model (1),

the marginal approach is commonly used. It has the advantage of simplicity but may not

be efficient. It would be useful to develop similar estimation methods for multivariate or

clustered interval-censored data although may not be easy.

§6. Analysis of Case-Cohort Interval-Censored Data

Case-cohort studies are commonly performed to reduce the cost on the collection of

covariate information and this is especially the case in, for example, large epidemiological

cohort studies, where the assembling or collecting of covariate information on all study

subjects may be expensive. Instead of collecting the information from all subjects, the

case-cohort design selects a random sample or sub-cohort from the original whole cohort

and collects or measures the covariate information only from the subjects in the sub-cohort

or who experience the failure event of interest. Given the follow-up nature of such studies,

it is easy to see that one may often only observe interval-censored data.

Several authors have recently investigated the analysis of interval-censored data aris-

ing from case-cohort studies. To describe their work, consider a failure time study giving

case II interval-censored data denoted by {Ui, Vi, δ1i, δ2i, Xi} if all covariates were ob-

served, where Ui, Vi, δ1i, δ2i and Xi are defined as above but associated with subject i,

i = 1, 2, · · · , n. Define ξi = 1 if the covariate Xi is known or observed and 0 otherwise,

i = 1, 2, · · · , n. Then under the case-cohort design, the observed data have the form

{(Ui, Vi, δ1i, δ2i, ξiXi, ξi); i = 1, 2, · · · , n}.

Assume that the sub-cohort is selected based on the independent Bernoulli sampling with

the selection probability q ∈ (0, 1). Then the probability that the covariate Xi can be

observed is given by

P(ξi = 1) = δ1i + δ2i + (1− δ1i − δ2i)q, i = 1, 2, · · · , n.

For estimation, a common approach is to maximize the inverse probability weighted log-

likelihood function

l(θ) =
n∑
i=1

wi{δ1i ln[1− S(Ui |Xi)] + δ2i ln[S(Ui |Xi)− S(Vi |Xi)]
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+ (1− δ1i − δ2i) lnS(Vi |Xi)}

assuming independent censoring. Here θ denotes all unknown parameters, S the survival

function of Ti given Xi, and

wi =
ξi

δ1i + δ2i + (1− δ1i − δ2i)q
.

Zhou et al. [63] discussed the method above for the situation where the Ti’s follow

the Cox model (1), while Du et al. [64] developed a similar method for the situation when

the Ti’s follow the additive hazards model (2). In addition, Du et al. [65] generalized the

method given in Zhou et al. [63] to the case where interval censoring may be informative,

and Zhao et al. [66] discussed the variable selection problem. More specifically, the former

proposed a frailty model-based method for case II interval-censored data under models

(19) and (20), and the latter considered the situation where the failure times of interest

Ti’s follow the Cox model (1) and the number of covariates is smaller than the sample size

n.

As mentioned above, the case-cohort design collects covariate information only from

the subject in a sub-cohort as well as those who experience the failure event of interest no

matter they belong to the sub-cohort or not. A more general type of such designs is the so-

called outcome-dependent sampling design, which aims to over-sample the subjects from

the segments of the study population that are thought to be more informative in terms

of the relationship between the failure time of interest and covariates or the outcome

and exposure. It is easy to see that as case-cohort studies, these studies can often yield

interval-censored data too. Among others, Zhou et al. [67, 68] discussed the analysis of case

II interval-censored data arising from the outcome-dependent sampling study under the

Cox model (1) and provided some estimation methods for regression parameters.

It is apparent that much more research is needed for the analysis of interval-censored

failure time data arising from case-cohort studies, especially for informatively interval-

censored data. Actually there exists little literature even for the case of informatively

right-censored data generated by case-cohort studies. More specifically, it would be useful

to generalize some of the methods discussed in Section 4 such as that given in Wang et

al. [39] to case-cohort studies. Also it is easy to see that multivariate or clustered interval-

censored data can occur in case-cohort studies too and thus it would be interesting to

generalize some of the methods discussed in Section 5 to the current situation. For most

of the methods discussed above or in the literature, the sub-cohort is usually assumed to be

selected based on the independent Bernoulli sampling and obviously this may not true or

one may prefer a different sampling scheme sometimes. Then it is clear that the methods
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above may not be valid anymore and one would need to develop some other estimation

procedures.

§7. Variable Section for Interval-Censored Data

Variable selection has recently attracted a great deal of attention with a huge amount

of literature established under various contexts. This is particularly true for the analysis

of failure time data and for the purpose, a general, commonly used approach has been

the penalized method that maximizes an objective function minus a penalty function.

To describe some recently developed methods for variable selection based on interval-

censored failure time data, consider a failure time study giving general interval-censored

data {(Li, Ri], Xi; i = 1, 2, · · · , n} from n independent subjects. Let S(t |Xi) denote the

survival function of the failure time Ti given Xi. Then under the independent censoring

assumption, the log likelihood function has the form

l(β, θ) =
n∑
i=1

ln[S(Li |Xij)− S(Ri |Xij)], (26)

and one can perform the variable selection by maximizing the penalized likelihood function

lp(β, θ) = l(β, θ) − pλ(β). Here β and θ represent the regression parameters of interest

and nuisance parameters, respectively, and pλ denotes a penalty function with the tuning

parameter λ.

Among others, Zhao et al. [69] discussed the approach above for the situation where

the Ti’s follow the Cox model (1) and proposed a broken adaptive ridge (BAR) regres-

sion procedure. For the situation, θ represents the unknown cumulative baseline hazard

function Λ0, which was approximated by the Bernstein polynomials in the method. In

particular, they considered the BAR penalty function given by

pλ(β) = λ
p∑
j=1

β2
j

β̃2
j

, (27)

and proved that the resulting variable selection and estimation procedure has both the

oracle property and the grouping property. In the above, βj denotes the jth component of

β, p the dimension of β, and β̃ = (β̃1, β̃2, · · · , β̃p)′ a consistent estimator of β with no zero

component. Following Zhao et al. [69], Li et al. [9] generalized the method to the situation

where the Ti’s follow the linear transformation model (4), and as mentioned above, Zhao

et al. [66] considered the same problem for interval-censored data arising from case-cohort

studies.
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A limitation of the method given in Zhao et al. [69] is that the number of covariates p

cannot be larger than the sample size n although p can be diverging with n. To address

this, Wu et al. [10] generalized it to the situation where the hazard function of Ti has the

form

λ(t |Xi, Zi) = λ0(t) exp[β′Xi + ψ(Zi)], (28)

Here as above, Xi denotes a vector of covariates associated with subject i but can be

high-dimensional or with p larger than n, the focus of the variable selection, Zi a vector

of low-dimensional covariates that should always be included in the model, and ψ(Zi) =
q∑
j=1

ψj(Zij) with the ψj ’s being unknown functions and Zi = (Zi1, Zi2, · · · , Ziq)′. In other

words, the Zij ’s are some covariates that may have non-linear effects on Ti.

Other authors who have studied variable selection for interval-censored data include

Hu et al. [70], Scolas et al. [71], Sun et al. [72], Wu and Cook [73], Xu et al. [74] and Yi et

al. [75]. In particular, Wu and Cook [73] considered the same problem as Zhao et al. [69]

but under the Cox model with the baseline hazard function being a piecewise constant

function. Sun et al. [72] and Xu et al. [74] proposed some variable selection procedures for

interval-censored data where there may exist a cured subgroup, and Yi et al. [75] considered

the variable selection under the context of joint analysis of longitudinal data and interval-

censored data. Note that all of the methods mentioned above apply only to either low- or

high-dimensional situations but would not be valid for ultra-high-dimensional covariates.

To address the latter situation, Hu et al. [70] developed a model-free or nonparametric

screening and feature selection procedure based on the idea of cumulative residuals for

interval-censored data. In particular, they proved that the method has the sure indepen-

dent screening property and will tend to rank the active or significant covariates above

the inactive or non-significant ones in terms of their association with the failure time of

interest.

More research is needed for variable selection under the context of interval-censored

failure time data. One topic is that in all methods described above, each covariate is

treated individually but sometimes there may exist some known group structures among

covariates. For the situation, it is apparent that some group variable selection procedures

that can take into account the group structure should be developed. Another topic that

has not been investigated is variable selection for the model with interaction terms [76].

For example, sometimes one may need to consider the following quadratic Cox model

λ(t |X) = λ0(t) exp
( p∑
j=1

βjXj +
p∑

j1=1

p∑
j2=1

βijXj1Xj2

)
,

where βj and Xj denote the jth component of β and X, respectively, and p the dimension
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of β and X. It is easy to see that the methods discussed above cannot apply to this

situation. A third direction for future research is to generalize some of the methods above

to interval-censored data with time-dependent covariates and/or time-varying regression

coefficients as well as to multivariate and clustered interval-censored data.

§8. Discussion and Concluding Remarks

As mentioned above, this paper aims to discuss some recent advances on several

important topics related to regression analysis of interval-censored failure time data but

not give a comprehensive review of recent literature on interval-censored data. There exist

several topics or types of interval-censored data on which some recent advances have been

made but not discussed above, including the analysis of truncated and/or doubly interval-

censored data, the analysis of interval-censored data with missing or auxiliary covariates,

nonparametric estimation of a survival function based on interval-censored data, and the

Bayesian approach for the analysis of interval-censored data.

In the preceding sections, the discussion has focused on the failure time variable that

starts or measures the time from zero to the occurrence of an event of interest. Some-

times the failure time of interest may measure or represent the elapse time between two

successive events such as the onset of a disease and the death due to the disease. One

will observe doubly interval-censored data if the observations on either or both events

suffer interval censoring, and among others, one area that often produces such data is

epidemiological studies on disease progression such as HIV and AIDS. For the situation,

left truncation may often occur together too and thus one has to face left-truncated and

doubly interval-censored data. Among others, Wang et al. [77] and Wang et al. [78] recently

discussed regression analysis of such data under the additive hazards model (2) and the

Cox model (1), respectively. For inference, the former developed an efficient maximum

likelihood estimation method, while the latter proposed a pairwise pseudo-likelihood es-

timation approach. In addition, Wang et al. [79] and Wu et al. [80] also investigated the

situation when there exists a cured subgroup, and Gao and Chan [81] considered a special

situation that yields length-biased and interval-censored data.

It is worth to note that in the literature, the term doubly censored data is sometimes

also used to denote the type of failure time data where the failure time variable of interest

T is either left- or right-censored if T 6 Li or T > R, respectively, and exactly observed if

L < T 6 R with L < R. Among others, Li et al. [82] and Li et al. [83] discussed regression

analysis of univariate and multivariate doubly censored data under the semiparametric

transformation model (6) and a model similar to model (23), respectively. For inference,
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both developed nonparametric maximum likelihood estimation procedures. Instead of

doubly censored data, in practice, one may face doubly truncated data where L and R

serve as left- and right-truncated variables rather than censoring variables. Among others,

Ying et al. [84] and Liu et al. [85] recently considered regression analysis of such data and

proposed weighted rank estimation procedures for regression parameters under a class of

linear models and transformation models, respectively.

Missing covariates often occur in failure time studies and in particular, missing co-

variates and interval-censored data can often occur together in various settings including

demographic, epidemiological, financial, medical and sociological studies. For the analysis

of data with missing covariates, a naive approach is to analyze only the subjects with

complete covariates but many authors have pointed out that this not only may be ineffi-

cient but also could yield biased estimators. Although many methods have been developed

for the analysis of right-censored failure time data with missing covariates, there exists

limited literature on the analysis of interval-censored data with missing covariates. The

authors who investigated the problem include Li et al. [86] and Du et al. [87], and both fo-

cused on case II interval-censored data arising from the additive hazards model (2) and the

linear transformation model (4), respectively. The former provided several inverse prob-

ably weighted estimation procedures when covariates may be missing at random, while

the latter proposed a two-step estimation procedure for non-ignorable missing covariates.

The asymptotic properties of the proposed estimators of regression parameters were es-

tablished in both situations. In addition, Chen et al. [88] discussed regression analysis of

multivariate current status data with auxiliary covariates.

The other authors who have recently discussed the analysis of interval-censored data

include He et al. [89], Gamage et al. [90], Li et al. [91], Lin et al. [92], Ou et al. [93], Shen [94],

Wang et al. [95], Wang et al. [96], Wu and Cook [97], Xu et al. [98] and Zhang and Zhao [99]. In

particular, Shen [94] and Wang et al. [95] discussed nonparametric estimation of a survival

function based on interval-censored data in the presence of informative censoring and left

truncation, respectively, and Lin et al. [92] and Zhang and Zhao [99] investigated the use

of the Bayesian approach and the empirical likelihood approach for regression analysis of

interval-censored data under the Cox model (1) and the linear transformation model (4),

respectively. Also Li et al. [91] considered the situation where there may exist misclassi-

fication in the analysis of current status data, Ou et al. [93] discussed quantile regression

of interval-censored data, and Xu et al. [98] studied joint analysis of interval-censored data

and panel count data. Furthermore, Szabo et al. [100] investigated the fitting of the ac-

celerated hazards model to interval-censored data, and Zhang and Zhang [101] studied the

spatial modeling of interval-censored data.
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