CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST 2009, 25(4) 381-388 DOI:      ISSN: 1001-4268 CN: 31-1256

Current Issue | Archive | Search                                                            [Print]   [Close]
ѧ������
Information and Service
This Article
Supporting info
PDF(231KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Normal distribution
stochastic orders
majorization
order statistics.
Authors
Huang Yongjun
Zhang Xinsheng
PubMed
Article by
Article by

On Stochastic Orders for Order Statistics\\from Normal Distributions

Huang Yongjun,Zhang Xinsheng

Department of Statistics, School of Management, Fudan University,

Abstract��

In this paper we obtain some new results on stochastic
orders for order statistics from normal distributions. Let
$X_1,\cdots,X_n,X^*_1,\cdots,X^*_n$ be independent normal random
variables with $X_{i}\sim N(\mu_i,\sigma^2)$ and $X^*_{i}\sim
N(\mu^*_i,\sigma^2)$, $i=1,\cdots,n$. Suppose that there exists a
strictly monotone function $f$ such that
$(f(\mu_{1}),\cdots,f(\mu_{n}))\succeq_{\text{m}}(f(\mu^{*}_{1}),\cdots,f(\mu^{*}_{n}))$,
we prove that: (i) if $f'(x)f''(x)\geq 0$, then
$X_{(1)}\leq_{\text{st}}X^*_{(1)}$; (ii) if $f'(x)f''(x)\leq 0$,
then $X_{(n)}\geq_{\text{st}}X^*_{(n)}$. Moreover, let $X_{i}\sim
N(\mu,\sigma_i^2)$ and $X^*_{i}\sim N(\mu,\sigma_i^{*2})$,
$i=1,\cdots,n$. We obtain that
$({1}/{\sigma_{1}},\cdots,{1}/{\sigma_{n}})\succeq_{\text{m}}
({1}/{\sigma^{*}_{1}},\cdots,{1}/{\sigma^{*}_{n}})$ implies that
$X_{(1)}\leq_{\text{st}}X^*_{(1)}$ and
$X_{(n)}\geq_{\text{st}}X^*_{(n)}$.

Keywords�� Normal distribution   stochastic orders   majorization   order statistics.  
Received 1900-01-01 Revised 1900-01-01 Online:  
DOI:
Fund:
Corresponding Authors: Huang Yongjun
Email:
About author:

References��
Similar articles
1��Liu Xin, Chen Hui, Fei Heliang.Estimation of the Parameters in the Lognormal Distribution with Grouped and Right-Censored Data[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2008,24(4): 371-380
2��Fang Biqi.Skew normal distribution, quadratic form, skewness, kurtosis.[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2008,24(6): 604-612
3��Han Feng:Wang Jianguo:Qiao DengJiang.Bayesian Assessment for Product's Radiation Hardening\\Performance under Lognormal Distribution[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2009,25(4): 433-440
4��Mu Weiyan,Xiong Shifeng.Testing Hypotheses for Ratios of Normal Density[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2009,25(6): 632-640
5��Su Yan,Yang Zhenghai.VDR Conditional Tests for Multivariate Normality[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2010,26(3): 234-244
6��Wen Yangjun,Zhu Daoyuan.Properties of New Multivariate Skew $t$ Distributions
Generated from Skew Pearson VII Distributions[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2010,26(4): 367-383
7��Xu Meiping, Gui Wenhao.An Exponential Slash Half Normal Distribution for Analyzing Nonnegative Data[J]. CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST, 2015,31(1): 57-70

Copyright by CHINESE JOURNAL OF APPLIED PROBABILITY AND STATIST