王婷, 孙毅. 因果图的无混杂与可压缩条件研究[J]. 应用概率统计, 2024, 40(4): 625-643. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022072
引用本文: 王婷, 孙毅. 因果图的无混杂与可压缩条件研究[J]. 应用概率统计, 2024, 40(4): 625-643. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022072
WANG T, Sun Y. Conditions for non-confounding and collapsibility within causal diagrams [J]. Chinese J Appl Probab Statist, 2024, 40(4): 625−643. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022072
Citation: WANG T, Sun Y. Conditions for non-confounding and collapsibility within causal diagrams [J]. Chinese J Appl Probab Statist, 2024, 40(4): 625−643. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022072

因果图的无混杂与可压缩条件研究

Conditions for Non-Confounding and Collapsibility within Causal Diagrams

  • 摘要: 在观察性研究中, 混杂现象往往会导致因果作用的估计出现偏差, 从而影响因果关系推断结论的准确性. 为了评估出真实的因果作用, 本文利用因果图结构, 研究关于因果作用无混杂与可压缩的问题. 本文引入了线性排序集与条件化稳定的概念并研究了其性质. 在此基础上, 结合c-可去点, 可反转边的定义与性质, 提出无混杂与可压缩的若干充分条件.

     

    Abstract: In observational studies, the phenomenon of confounding bias often leads to errors in the evaluation of causal effects, which in turn affects the accuracy of conclusions in causal inference. This paper details the properties of these two concepts of non-confounding and collapsibility in evaluating the true causal effects and proposes several conditions for non-confounding and collapsibility with knowledge of the constructed causal diagrams. In order to give characterizations for these conditions, we introduce the concepts of linearly ordered set and stability under conditioning and studies on certain properties. Based on the above arguments, we finally present sufficient conditions for non-confounding and collapsibility, respectively.

     

/

返回文章
返回