线性模型下二水平正规设计效应混杂的度量
The Confounding Measure of Effects in Two-level Regular Designs under Linear Model
-
摘要: 在线性模型中, 试验设计效应之间的混杂会导致参数估计存在某种偏差. 针对二水平正规设计, 本文引入混杂指标集来度量这类偏差, 并提出一种新方法来研究最小N混杂准则分类模型的性质, 得到了低阶效应混杂指标的计算公式以及最优N设计存在的一些必要条件, 通过例子展示了所得到的理论结果.Abstract: In design of experiments, the confounding of effects can cause the bias of parameter estimator in linear model. For two-level regular design, the paper introduces a confounding index pattern to measure such bias. A new method is proposed to study the properties of classification pattern for minimum N aberration criterion. We obtain the formula of confounding among lower-order effects, and provide some necessary conditions for optimal N designs. Some examples are given to illustrate the theoretical results.