李奥, 李智, 李智明. 线性模型下二水平正规设计效应混杂的度量[J]. 应用概率统计, 2024, 40(5): 757-771. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022099
引用本文: 李奥, 李智, 李智明. 线性模型下二水平正规设计效应混杂的度量[J]. 应用概率统计, 2024, 40(5): 757-771. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022099
LI Ao, LI Zhi, LI Zhiming, . The Confounding Measure of Effects in Two-Level Regular Designs under Linear Model[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(5): 757-771.
Citation: LI Ao, LI Zhi, LI Zhiming, . The Confounding Measure of Effects in Two-Level Regular Designs under Linear Model[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(5): 757-771.

线性模型下二水平正规设计效应混杂的度量

The Confounding Measure of Effects in Two-Level Regular Designs under Linear Model

  • 摘要: 在线性模型中, 试验设计效应之间的混杂会导致参数估计存在某种偏差.针对二水平正规设计, 本文引入混杂指标集来度量这类偏差, 并提出一种新方法来研究其性质, 揭示它与别名效应数型、别名关系数及字长型之间的关系, 得到了低阶效应混杂指标的计算公式以及最优设计存在的一些必要条件, 并通过例子展示了所得到的理论结果.

     

    Abstract: In the design of experiments, the confounding of effects can cause the bias of parameter estimator in a linear model. This paper mainly proposes a confounding index for two-level regular designs to measure such bias. We introduce a new method to study the properties of the index and reveal the relationship between the confounding index, alias relation number, aliased component-number pattern, and word-length pattern. The confounding formula among lower-order effects is obtained to provide some conditions for optimal designs. Some examples are provided to illustrate the theoretical results.

     

/

返回文章
返回