马丽, 叶柳, 韩新方. Rademacher和的改进型Berry-Esseen界[J]. 应用概率统计, 2024, 40(6): 910-941. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022121
引用本文: 马丽, 叶柳, 韩新方. Rademacher和的改进型Berry-Esseen界[J]. 应用概率统计, 2024, 40(6): 910-941. DOI: 10.12460/j.issn.1001-4268.aps.2024.2022121
MA li, YE Liu, HAN Xin-Fang, . Improved Berry-Esseen Bound for Rademacher Sum[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(6): 910-941.
Citation: MA li, YE Liu, HAN Xin-Fang, . Improved Berry-Esseen Bound for Rademacher Sum[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(6): 910-941.

Rademacher和的改进型Berry-Esseen界

Improved Berry-Esseen Bound for Rademacher Sum

  • 摘要:X=\sum\limits_i=1^n a_i\xi_i是一个方差为1的Rademacher和, Z是一个标准正态随机变量.本文研究对任意的x\in\mathbbR, |\mathsfP(X\leqslant x)-\mathsfP(Z\leqslant x)|的上界, 利用XZ的分布的对称性, 借助于R软件, 本文在一些条件下得到了如下改进的Berry Esseen上界: |\mathsfP(X\leqslant x)-\mathsfP(Z\leqslant x)|\leqslant\mathsfP\left (Z\in\left (0, a_1\right)\right), \forall x\in\mathbbR. 从而部分地解决了Nathan K.和Ohad K.提出的猜想.

     

    Abstract: Let X=\sum\limits_i=1^n a_i \xi_i be a Rademacher sum with Var (X) = 1 and Z be a standard normal random variable. This paper concerns the upper bound of |\mathsfP(X \leqslant x)-\mathsfP(Z \leqslant x)| for any x ∈ \mathbbR . Using the symmetric properties and R software, this paper gets the following improved BerryEsseen type bound under some conditions, |\mathsfP(X \leqslant x)-\mathsfP(Z \leqslant x)|\leqslant \mathsfP\left(Z \in\left(0, a_1\right)\right), \forall x \in \mathbbR, which is one of the modified conjecture proposed by Nathan K. and Ohad K.

     

/

返回文章
返回