离散响应 MIDAS 模型的向前验证模型平均方法
Forward-Validation Model Averaging for Discrete Response MIDAS Model
-
摘要: 在本文中, 考虑到时间序列数据预测的时序特征, 我们构建了二元离散响应的混频数据(MIDAS) 模型的向前验证模型平均方法 (FVMA). 与一般的同频时间序列模型平均预测方法不同的是, 我们允许候选模型包含不同频率的高频解释变量以及不同的样本量, 并证明了所提出方法的两个理论性质. 首先, 我们确立了该 FVMA 方法的渐近最优性, 即实现尽可能低的预测风险. 其次, 当候选模型集包括正确设定的模型时, 我们证明了所提出的 FVMA 方法渐近地将所有权重分配给这些候选模型. 我们的方法在数值模拟和实证分析中的表现总体上也优于一般的离散值时间序列预测方法.Abstract: In this paper, noting temporal order of time series forecasting, we introduce Forward-Validation Model Averaging (FVMA) for the prediction of binary response MIxed DAta Sampling (MIDAS) model. In contrast to the general model averaging prediction method, we allow the frequency of explanatory variables and the sample size to vary among the candidate models. We provide two theoretical justifications for the proposed method. First, we establish the asymptotic optimality of FVMA method in the sense of achieving the lowest possible prediction risk. Second, when the candidate model set includes correctly specified models, we demonstrate that the proposed FVMA asymptotically assigns all weights to the correctly specified models. Our method generally outperforms typical discrete time series prediction methods in both numerical simulation and empirical analysis.