有信息退出缺失纵向数据的正则精度阵估计

Regularized Inverse Covariance Estimation with Informative Dropout

  • 摘要: 我们对有信息退出缺失纵向数据提出了一种估计稀疏逆协方差矩阵的新方法。 基于改进的Cholesky分解方法,我们将稀疏逆协方差矩阵转化为自回归模型,这样自动保证了协方差矩阵的正定性。 为了综合有信息的退出缺失机制,我们随后提出了一种使用逆概率加权的惩罚估计方程方法, 并使用广义矩方法估计有信息退出缺失机制的倾向参数。 我们研究了估计量的渐近特性。最后,我们通过蒙特卡罗模拟和实际应用说明了所提方法的有效性和可行性。

     

    Abstract: We propose a novel method for estimating the sparse inverse covariance matrix for longitudinal data with informative dropouts. Based on the modified Cholesky decomposition, the sparse inverse covariance matrix is modelled by the autoregressive regression model, which guarantees the positive definiteness of the covariance matrix. To account for the informative dropouts, we then propose a penalized estimating equation method using the inverse probability weighting. The informative dropout propensity parameters are estimated by the generalized method of moments. The asymptotic properties are investigated for the resulting estimators. Finally, we illustrate the effectiveness and feasibility of the proposed method through Monte Carlo simulations and a practical application.

     

/

返回文章
返回