周茂袁, 邱静, 周茂凯, 钱琨. 一种结合有监督分类器和MEWMA的控制图[J]. 应用概率统计, 2025, 41(1): 28-42. DOI: 10.12460/j.issn.1001-4268.aps.2025.2022113
引用本文: 周茂袁, 邱静, 周茂凯, 钱琨. 一种结合有监督分类器和MEWMA的控制图[J]. 应用概率统计, 2025, 41(1): 28-42. DOI: 10.12460/j.issn.1001-4268.aps.2025.2022113
ZHOU Maoyuan, QIU Jing, ZHOU Maokai, QIAN Kun, . A Control Chart Combining Supervised Classifier and MEWMA[J]. Chinese Journal of Applied Probability and Statistics, 2025, 41(1): 28-42.
Citation: ZHOU Maoyuan, QIU Jing, ZHOU Maokai, QIAN Kun, . A Control Chart Combining Supervised Classifier and MEWMA[J]. Chinese Journal of Applied Probability and Statistics, 2025, 41(1): 28-42.

一种结合有监督分类器和MEWMA的控制图

A Control Chart Combining Supervised Classifier and MEWMA

  • 摘要: 在过程监控中,使用现代工业系统中的变量进行准确有效的监控诊断仍然是一个具有挑战性的任务. 本文以多元指数加权移动平均(MEWMA)策略结合一种有监督分类器(“one plus epsilon”,简称OPE分类器),提出OPE-MEWMA控制图. 在考虑不同模型、偏移模式和偏移大小的情况下,探究了控制图对均值偏移的检测能力,通过比较平均运行长度等多个指标衡量控制图的性能表现. 仿真结果表明,所开发的OPE-MEWMA控制图能够快速检测到均值偏移,灵敏度较高.

     

    Abstract: In the process of monitoring, it is still a challenging task to use the features of modern industrial system for accurate and effective monitoring. This article presents the OPE-MEWMA control chart based on the multivariate exponentially weighted moving average (MEWMA) strategy combined with a supervised classifier ('one plus epsilon', OPE classifier for short). We evaluate the ability of the control chart detecting the mean shifts by considering various factors. The average run length and several other indicators are used to measure the performance of the control chart. The simulation results show that the OPE-MEWMA control chart can detect the mean shifts quickly and the model has high sensitivity to process shifts.

     

/

返回文章
返回