陈大川, 李辰旭. 波动率模型下期权定价的闭式渐进展开方法[J]. 应用概率统计, 2025, 41(2): 223-247. DOI: 10.12460/j.issn.1001-4268.aps.2025.2022155
引用本文: 陈大川, 李辰旭. 波动率模型下期权定价的闭式渐进展开方法[J]. 应用概率统计, 2025, 41(2): 223-247. DOI: 10.12460/j.issn.1001-4268.aps.2025.2022155
CHEN Dachuan, LI Chenxu, . Closed-Form Expansion of Option Prices under Stochastic Volatility Model[J]. Chinese Journal of Applied Probability and Statistics, 2025, 41(2): 223-247.
Citation: CHEN Dachuan, LI Chenxu, . Closed-Form Expansion of Option Prices under Stochastic Volatility Model[J]. Chinese Journal of Applied Probability and Statistics, 2025, 41(2): 223-247.

波动率模型下期权定价的闭式渐进展开方法

Closed-Form Expansion of Option Prices under Stochastic Volatility Model

  • 摘要: 在随机波动率模型的假设下, 欧式期权价格通常没有解析解. 本文以Malliavin随机变分理论为基础, 通过围绕常数波动率模型对随机波动率路径进行展开, 提出了一种可以逼近此类欧式期权价格的新渐进展开方法. 这种方法可以给出闭式展开表达式, 能够修正错误定价问题并且推广著名的Black-Scholes-Merton (1973) 公式. 受到Li1的启发, 我们的渐进展开原则上可以实现任意阶的计算, 并得到精确且高效的计算结果. 在数值结果部分, 本文以基于GARCH扩散过程的随机波动率模型为例来进行说明.

     

    Abstract: Under the stochastic volatility model, European option prices usually have no analytical solutions. Based on the theory of Malliavin calculus, this paper proposes a new asymptotic expansion method to approximate the price of such European options by expanding the stochastic volatility path around a constant volatility model. This method provides a closed-form expansion formula that can correct the mispricing problem and generalize the famous Black-Scholes-Merton (1973) formula. Inspired by Li1, our asymptotic expansion can achieve correction terms of arbitrary order, resulting in accurate and effcient outcomes. As an illustrative example, this paper uses a stochastic volatility model based on the GARCH diffusion process in the numerical results section.

     

/

返回文章
返回