变分贝叶斯高维分位回归的非对称Horseshoe+先验

Asymmetric Horseshoe+ Prior for high Dimensional Quantile Regression with Variational Bayes

  • 摘要: 高维数据分析需要进行变量选择,贝叶斯分位回归能够很好的对复杂数据进行建模。常见的变量选择方法,未考虑到回归系数潜在的模式或不对称性。本文提出非对称Horseshoe+先验,考虑到贝叶斯模型计算速度问题,采用VB算法在贝叶斯分位回归中进行参数估计和变量选择。模拟研究和实际数据分析表明,回归系数或协变量可能存在潜在的模式时,非对称Horseshoe+先验优于对称Horseshoe+先验先验。

     

    Abstract: High-dimensional data analysis necessitates variable selection, and Bayesian quantile regression proves to be an effective method for modeling complex data. Common variable selection approaches often overlook potential patterns or asymmetries in regression coefficients. This paper introduces the asymmetric Horseshoe+ prior, addressing computational effciency issues in Bayesian quantile regression by employing the Variational Bayes (VB) algorithm for parameter estimation and variable selection. Results from simulation studies and real world data analyses highlight the superiority of the asymmetric Horseshoe+ prior over the symmetric Horseshoe+ prior when there are potential patterns or asymmetries in regression coefficients or covariates.

     

/

返回文章
返回