随机场信息论

Information Theory of Discrete Random Fields

  • 摘要: 在本文中,我们主要回顾了包含\mathbbZ^d和树的图上的离散随机场在信息论的进展。第一部分将信息度量扩展到无限树上的随机场,建立了两个在概率收敛方面的AEP,并给出了树上的马尔可夫链场的几乎处处收敛的AEP。第二部分涉及\mathbbZ^d上的随机场,重点关注了率失真函数和临界失真。第三部分简要介绍了关于一般图上的随机场的信息论相关方面,包括梯度量、Ising信道、I-测度以及图上随机场的信息论。最后我们还介绍了序列匹配扩展到随机场匹配的可能性。本文涉及离散随机过程和随机场,所有随机变量都取值于有限字母表。

     

    Abstract: In this article, we mainly review the progress of information theory for discrete random fields indexed on graphs including lattices such as \mathbbZ^d and trees. The first part gives the extension of information measures for random processes to random fields on an infinite tree and establish two AEPs with convergence in probability, and then for Markovian chain fields on trees with convergence almost surely. The second part concerns random fields on \mathbbZ^d, and focuses on rate-distortion function and critical distortion. The third part introduces briefly the related aspects of information theory for random fields on general graph, including the entropy aspects, the Ising channel, the I-measures and general framework of information theory for random fields on graphs. We also pursue the possible extension of sequence matching to configuration matching for random fields. This article concerns discrete random processes and random fields which means that all random variables take value in a finite alphabet.

     

/

返回文章
返回