基于马尔可夫抽样的非线性分类模型的学习性能分析

Learning Performance of Nonlinear Classification Models Based on Markov Sampling

  • 摘要: 非线性分类模型由于其突出的处理复杂问题能力,在各领域应用广泛.本文在独立同分布样本的传统框架基础上,研究了基于马尔可夫抽样的非线性分类模型的学习性能.因此,本研究引入了ueMC-NL算法,在随机森林和MLP模型上的数值研究表明:与独立同分布样本相比,利用一致遍历马尔可夫链样本的非线性分类模型产生的错误分类率更低.

     

    Abstract: Nonlinear classification models are widely used in various fields due to their excellent performance in handling complex problems. The paper investigates the learning performance of nonlinear classification models based on Markov sampling, which builds upon the traditional framework with i.i.d. samples. Subsequently, the paper introduces a ueMC-NL algorithm, tailored specifically for nonlinear classification models, facilitating the production of ueMC samples from a finite dataset. Numerical investigations on the random forest and the MLP model reveal that nonlinear classification models utilizing ueMC samples yields fewer misclassification rates compared to i.i.d. samples.

     

/

返回文章
返回