正极值指数渐近无偏估计的构造

Construction of Asymptotical Unbiased Estimators of A Positive Extreme Value Index

  • 摘要: 极值指数估计是极值统计中重要的研究课题之一。本文主要探讨正极值指数估计问题.首先,借助两个统计量,构造了四个含有参数\alpha的正极值指数估计,在一阶正则变化条件与二阶正则变化条件下,证明了所提出估计的相合性与渐近正态性。进一步,通过选取合适的参数使之成为渐近无偏估计。其次,讨论了新估计在渐近性质方面与有限样本性质方面的表现。在渐近性质方面,与已有渐近无偏估计进行比较,新估计表现较好;在有限样本方面,提出了一种选取参数\alpha的新方法,利用Monte-Carlo模拟,新估计与已有估计进行比较,结果表明所提出的参数\alpha选取方法可行且新估计表现更优.最后,我们提出了一种构造正极值指数渐近无偏估计的思想。

     

    Abstract: The estimator of extreme value index is one of the important research topics in extreme value statistics. This paper focuses on the estimator of a positive extreme value index. Firstly, with the help of two statistics, four estimators of the positive extreme value index with the parameter α are proposed. The consistency and asymptotic normality of the proposed estimators are proved under the first-order regular variation condition and the second-order regular variation condition. Further, the four estimators become asymptotical unbiased by choosing appropriate parameter. Secondly, the performance of the new estimators in terms of asymptotic properties and finite sample properties is discussed. In terms of asymptotic properties, the new estimators perform better when compared with the existing asymptotical unbiased estimators. In the finite sample, a new method of choosing the parameter α is proposed, and the new estimators are compared with the existing ones through Monte-Carlo simulations. The results show that the proposed method of selecting the parameter α is feasible and the new estimators perform better. Finally, we propose an idea of constructing asymptotical unbiased estimator of a positive extreme value index.

     

/

返回文章
返回