双因素跳扩散模型下复合期权定价

Pricing of Composite Options under a Two Factor Jump Diffusion Model

  • 摘要: 本文提出了一个具有波动利率的双因素随机波动跳扩散模型。具体而言,我们将波动利率定义为两个随机波动率的线性组合。在此基础上,我们研究了欧式复合看涨期权的定价复杂性,得到了期权的半解析公式,并使用快速傅立叶变换(FFT)和蒙特卡罗(MC)模拟方法计算期权价格。此外,我们对所选参数进行了灵敏度分析。我们的数值测试表明,当同时考虑波动性和跳跃风险,特别是双重波动性时,我们的方法具有潜在的优势。

     

    Abstract: In this paper, a two-factor stochastic volatility jump-diffusion model with fluctuating interest rate is presented. Specifically, we define the fluctuating interest rate as a linear combination of two random volatility events with jumps. On the basis of this paradigm, we investigate the pricing complexity of European compound call options. Our contribution is to extract the semi-analytical formulations of these options and calculate the option price using fast Fourier transform (FFT) and Monte Carlo (MC) simulation methods. In addition, we conduct a thorough sensitivity analysis of the selected parameters. Our numerical tests show that our approach has potential advantages when both volatility and jump risk are taken into consideration, particularly when double volatility is considered.

     

/

返回文章
返回