存在缺失响应和删失响应时间的潜变量建模:一种脆弱比例风险方法

Latent Variable Modeling with Missing and Deleting Response Times: A Fragile Proportional Hazard Approach

  • 摘要: 在大规模教育测评中,准确分析响应结果、响应时间、遗漏项和未到达项是评估考生能力和测试效度的关键.面对这一分析挑战,本研究利用项目反应理论(Item Response Theory,IRT)与速度-准确性(Speed-Accuracy,SA)层次化框架,并引入生存分析中的脆弱比例风险模型(Frailty Proportional Hazard Model).该模型不仅放宽了对时间分布的要求,而且充分考虑了受访者群体的异质性,并可有效利用协变量数据提升估计精度.为实现大规模数据的高效拟合,我们开发了一种随机EM算法,并通过理论分析确认了模型参数的渐近正态性,确保其在大样本环境下的准确性.模拟数据的进一步分析显示,相较于现有主流模型,本模型在处理数据删失的复杂场景下展现出更优的估计效果.这些成果显著提升了对教育评估数据的解析能力,同时为教育政策的制定和学术研究提供了一种有效的工具.

     

    Abstract: In large-scale educational assessments, accurately analyzing response results, response times, omissions, and unreached items is crucial for evaluating student abilities and test validity. To address this analytical challenge, this study utilizes Item Response Theory (IRT) and a Speed-Accuracy (SA) hierarchical framework, incorporating the frailty proportional hazard model from survival analysis. This model not only relaxes the requirements for time distribution but also considers the heterogeneity of the test-taker population and can effectively use covariate data to enhance estimation precision. To efficiently fit large-scale data, we developed a stochastic EM algorithm and confirmed the asymptotic normality of the model parameters through theoretical analysis, ensuring accuracy in a large-sample environment. Further analysis with simulated data demonstrates that, compared to existing mainstream models, our model shows superior estimation performance in complex scenarios of data omission. These results significantly enhance our ability to interpret educational assessment data and provide an effective tool for educational policy formulation and academic research.

     

/

返回文章
返回