基于随机抽样策略的电力系统负荷参数反演估计
-
摘要: 为利用实际运行数据实现电力系统综合负荷模型参数的准确反演,提出一种基于随机抽样策略的电力系统综合负荷参数反演方法,利用随机森林方法对电力仿真模型输出的时间序列进行筛选,得到对综合负荷参数敏感的时序变化量;利用仿真数据,通过RF-LSTM建立综合负荷参数变化与仿真输出之间的关系。使用该方法对某供电公司实际网络的电力系统综合负荷参数进行反演估计,结果表明该混合模型所预测参数反演的故障曲线与真实的曲线变化幅度仅为0.27%,比未经特征筛选的传统单一随机森林、LSTM等机器学习模型更为理想。
下载: