基于Yeo-Johnson变换的隐马尔可夫模型贝叶斯分析

Bayesian Analysis of Hidden Markov Models with Yeo-Johnson Transformation

  • 摘要: 本文提出了基于Yeo-Johnson变换的隐马尔可夫模型以分析异构纵向数据.该模型假设数据来自不同的潜在状态总体,从而揭示异构纵向数据的内在结构与变化机制.另外,模型引入Yeo-Johnson变换以处理非正态数据.本文采用了贝叶斯分析方法,包括马尔可夫链蒙特卡洛方法和Watanabe–Akaike信息准则,估计未知参数和确定潜在状态数目.模拟结果显示本文提出的方法能够正确地估计未知参数和潜在状态数目.本文最后利用此模型分析1997年美国青年纵向调查数据集.

     

    Abstract: This paper proposes hidden Markov models with Yeo-Johnson transformation for analyzing heterogeneous longitudinal data. The model assumes data from different hidden states to reveal the inner structure and transition mechanisms. Moreover, the model introduces the Yeo-Johnson transformation to handle non-normal observations. This paper employs Bayesian methods, including Markov chain Monte Carlo and Watanabe-Akaike Information Criterion, to obtain the estimates of unknown parameters and the number of hidden states. Simulation results show that the proposed methods can provide accurate estimates of the unknown parameters and the number of hidden states. Finally, the National Longitudinal Survey of Youth 1997 data set is analyzed using the proposed model and methods.

     

/

返回文章
返回