基于SMA-Realized AHAR GARCH CICSI模型的波动率预测研究

Volatility Forecasting Based on the SMA-Realized AHAR GARCH CICSI Model

  • 摘要: 股票波动率的科学预测对于投资者和监管部门进行风险度量和管理具有重要的理论和现实意义.本文综合考虑投资者情绪,收益波动的时变性、非对称性、尖峰厚尾性与长记忆性,构建偏t分布下的SMA-Realized AHAR GARCH CICSI模型进行波动率预测和风险度量.以沪深300指数的高频数据为研究对象,利用极大似然方法进行样本内拟合,运用VaR后验测试、MCS检验、样本外R2检验以及经济价值检验综合比较不同模型的波动率估计效果和经济效用.实证结果显示:引入投资者情绪、收益波动的时变性、非对称性、尖峰厚尾性与长记忆性明显改善了模型的拟合效果和预测准确性,其中SMA-Realized AHAR GARCH CICSI模型拥有最优的波动率预测能力和经济效用.

     

    Abstract: A scientific prediction of stock volatility is of significant theoretical and practical importance for risk measurement and management by investors and regulatory authorities. This paper incorporates investor sentiment, time-varying fluctuation, asymmetry, fat-tailed distribution, and long-term memory properties to develop the SMA-Realized AHAR GARCH CICSI model under the skewed-t distribution framework for volatility forecasting and risk assessment. Using high-frequency data of the CSI 300 Index, we estimate the model parameters through the maximum likelihood method. VaR predition and posterior test, MCS test, out-of-sample R2 test, and the economic value evaluation are employed to comprehensively compare the volatility forecasting performance and economic utility of different models. The empirical results indicate that accounting for investor sentiment, time-varying fluctuation, asymmetry, fat-tailed characteristics, and long-term memory significantly enhances the model’s fitting performance and predictive accuracy. Among the tested models, the SMA-Realized AHAR GARCH CICSI model demonstrates superior volatility forecasting ability and economic utility.

     

/

返回文章
返回