正则化趋势滤波广义最小二乘法与伪回归问题研究

Research on Regularized Trend Filtering Generalized Least Squares Method and Spurious Regression Problem

  • 摘要: 序列中含有趋势成分或随机扰动项存在自相关或单位根过程会引起伪回归问题. 为解决该问题, 本文提出了正则化趋势滤波广义最小二乘法. 该方法无需事先了解趋势成分以及随机扰动项自相关的具体形式, 且无需建立新的估计方法与检验统计量, 能够借鉴现有传统回归分析方法进行统计推断, 具有普适性以及重要的实际应用价值. 数值模拟验证了该方法在多种数据情况以及实际数据中具有稳健性与有效性. 研究结果表明: 本文提出的正则化趋势滤波广义最小二乘法能够有效解决序列由于含有趋势或者自相关以及单位根过程产生的伪回归问题, 提高回归估计量的可靠性.

     

    Abstract: The presence of trend components or random disturbance in a sequence with autocorrelation or unit root processes can cause spurious regression. To solve this problem, this paper proposes a regularized trend filtering generalized least squares method. This method does not require prior knowledge of the specific forms of trend components and random disturbance autocorrelation, and does not require the introduction of new estimate method or test statistics. It can draw on existing traditional regression analysis methods for statistical inference and has universality and important practical application value. Numerical simulations have verified the robustness and effectiveness of this method in various situations and actual data. The results show that the regularized trend filtering generalized least squares method proposed in this paper can effectively solve the spurious regression problem caused by trends or autocorrelation of random disturbance, as well as unit root processes, and effectively improve the reliability of regression estimators.

     

/

返回文章
返回