面板计数数据和区间删失数据的估计研究

Estimation research on panel count data and interval-censored data

  • 摘要: 在生存分析中,区间删失数据与面板计数数据是两类重要的不完整数据.比例风险模型是分析删失数据最常用的模型之一,为了充分考虑协变量的非线性效应,文章将传统的比例风险模型扩展为非参数比例风险模型.文章将讨论这种一般模型下区间删失数据与面板计数数据的联合估计分析,假设失效时间服从非参数比例风险模型,引入一个脆弱项用于刻画失效时间与计数过程的相关性,然后利用基于伯恩斯坦多项式的sieve方法极大化联合似然函数对参数进行估计。最后,进行了大量数值模拟,并将提出的估计方法应用于皮肤癌实例数据。

     

    Abstract: In survival analysis, interval-censored data and panel count data are two important types of incomplete data. The proportional hazard model is one of the most commonly used models for analyzing censored data, and in order to fully consider the nonlinear effects of covariates, the article extends the traditional proportional hazard model to a nonparametric proportional hazard model. The article will discuss the joint estimation analysis of interval censored data and panel count data under this general model. Assuming that the failure time obeys the nonparametric proportional hazard model, a fragile term is introduced to characterize the correlation between the failure time and the counting process, and then the joint likelihood function is maximized using the sieve method based on Bernstein polynomials to estimate the parameters. Finally, extensive numerical simulations are performed and the proposed estimation method is applied to skin cancer example data.

     

/

返回文章
返回