最小低阶混杂和弱最小低阶混杂412n设计的构造

Construction of Minimum Aberration and Weak Minimum Aberration 412n Designs

  • 摘要: 最小低阶混杂准则是选取最优部分因子设计的常用准则之一。本文研究了4^1 2^n设计D的结构,对满足5 N/16+1\leq n\leq N/2的n,其中N是设计D的水平组合数,首先得到了刻画D的最优性的关键项A_30(D)和A_31(D)的下界,以及达到下界的D的结构,然后给出了最小低阶混杂4^1 2^n设计或者弱最小低阶混杂4^1 2^n设计的构造方法。

     

    Abstract: The minimum aberration criterion is one of the popular criteria for choosing the optimal fractional factorial designs. The paper studies the structure of the 4^1 2^n designs D. For n with 5 N / 16+1 \leq n \leq N / 2, where N is the run size of D, it first obtains the lower bounds of A_30(D) and A_31(D), the key terms which describe the optimality of D, and the structure of D which attains the lower bounds. Then it gives the construction methods of minimum aberration 4^1 2^n designs or weak minimum aberration 4^1 2^n designs.

     

/

返回文章
返回