由分数噪声驱动的一类分数阶随机偏微分方程的光滑密度研究
-
摘要: 本文中, 我们研究了由分数噪声驱动的一类分数阶随机偏微分方程, 利用Malliavin分析技巧, 证明了该类方程的适度解在任意固定的点(t,x)\in0,T\times\mathbbR具有光滑密度.Abstract: In this paper we consider a class of fractional stochastic partial differential equation driven by fractional noise. We prove that the solution admits a smooth density at any fixed point (t,x)\in0,T\times\mathbbR with T>0 by using the techniques of Malliavin calculus.