朱尚伟, 李景华. 岭回归估计的向量参数方法[J]. 应用概率统计, 2018, 34(5): 501-514. DOI: 10.3969/j.issn.1001-4268.2018.05.006
引用本文: 朱尚伟, 李景华. 岭回归估计的向量参数方法[J]. 应用概率统计, 2018, 34(5): 501-514. DOI: 10.3969/j.issn.1001-4268.2018.05.006
ZHU Shangwei, LI Jinghua. Vector Parameter for Ridge Regression[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(5): 501-514. DOI: 10.3969/j.issn.1001-4268.2018.05.006
Citation: ZHU Shangwei, LI Jinghua. Vector Parameter for Ridge Regression[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(5): 501-514. DOI: 10.3969/j.issn.1001-4268.2018.05.006

岭回归估计的向量参数方法

Vector Parameter for Ridge Regression

  • 摘要: 本文提出岭回归估计的向量参数方法,选择均方误差函数的负梯度方向作为参数向量方向,根据均方误差与拟合误差的预期约束条件选择确定参数向量模长. 文中获得了两个单调性结论,向量参数岭回归估计的均方误差是参数向量模长的单调减函数,而拟合误差是参数向量模长的单调增函数. 基于两类误差的单调性结论,本文创建了关于两类误差的预期约束条件, 预期条件约束下的向量参数岭回归方法有望成为兼备均方误差次优与拟合误差适度的双赢估计.文章最后是一个应用实例.

     

    Abstract: In this paper, a vector parameter method for ridge regression is proposed. We choose the negative gradient of mean square error as vector direction and decide vector norm with the expectation constrains both of mean square error and of residual error. We come to conclusions that the mean square error is a decreasing function of vector norm while the residual error a increasing one. It is the monotonicity of the errors that leads to our expectation constrains. Since two conflict constrains are under consideration, our vector parameter ridge regression is expected to bear both satisfactory mean square error and acceptable residual error. Finally, a multi-collinearity model is given as an example.

     

/

返回文章
返回