解宇涵, 宋文和, 周明琴, 张应应. 具有正态逆伽玛先验的正态分布中的方差参数在Stein损失下的贝叶斯后验估计量[J]. 应用概率统计, 2018, 34(6): 551-564. DOI: 10.3969/j.issn.1001-4268.2018.06.001
引用本文: 解宇涵, 宋文和, 周明琴, 张应应. 具有正态逆伽玛先验的正态分布中的方差参数在Stein损失下的贝叶斯后验估计量[J]. 应用概率统计, 2018, 34(6): 551-564. DOI: 10.3969/j.issn.1001-4268.2018.06.001
XIE Yuhan, SONG Wenhe, ZHOU Mingqin, ZHANG Yingying. The Bayes Posterior Estimator of the Variance Parameter of the Normal Distribution with a Normal-Inverse-Gamma Prior under Stein's Loss[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(6): 551-564. DOI: 10.3969/j.issn.1001-4268.2018.06.001
Citation: XIE Yuhan, SONG Wenhe, ZHOU Mingqin, ZHANG Yingying. The Bayes Posterior Estimator of the Variance Parameter of the Normal Distribution with a Normal-Inverse-Gamma Prior under Stein's Loss[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(6): 551-564. DOI: 10.3969/j.issn.1001-4268.2018.06.001

具有正态逆伽玛先验的正态分布中的方差参数在Stein损失下的贝叶斯后验估计量

The Bayes Posterior Estimator of the Variance Parameter of the Normal Distribution with a Normal-Inverse-Gamma Prior under Stein's Loss

  • 摘要: 对于先验分布为正态逆伽玛分布的正态分布的方差参数,我们解析地计算了具有共轭的正态逆伽玛先验分布的在Stein损失函数下的贝叶斯后验估计量. 这个估计量最小化后验期望Stein损失.我们还解析地计算了在平方误差损失函数下的贝叶斯后验估计量和后验期望Stein损失.数值模拟的结果例证了我们的如下理论研究: 后验期望Stein损失不依赖于样本;在平方误差损失函数下的贝叶斯后验估计量和后验期望Stein损失要一致地大于在Stein损失函数下的对应的量. 最后,我们计算了上证综指的月度的简单回报的贝叶斯后验估计量和后验期望Stein损失.

     

    Abstract: or the variance parameter of the normal distribution with a normal-inverse-gamma prior, we analytically calculate the Bayes posterior estimator with respect to a conjugate normal-inverse-gamma prior distribution under Stein's loss function. This estimator minimizes the Posterior Expected Stein's Loss (PESL). We also analytically calculate the Bayes posterior estimator and the PESL under the squared error loss function. The numerical simulations exemplify our theoretical studies that the PESLs do not depend on the sample, and that the Bayes posterior estimator and the PESL under the squared error loss function are unanimously larger than those under Stein's loss function. Finally, we calculate the Bayes posterior estimators and the PESLs of the monthly simple returns of the SSE Composite Index.

     

/

返回文章
返回