Abstract:
or the variance parameter of the normal distribution with a normal-inverse-gamma prior, we analytically calculate the Bayes posterior estimator with respect to a conjugate normal-inverse-gamma prior distribution under Stein's loss function. This estimator minimizes the Posterior Expected Stein's Loss (PESL). We also analytically calculate the Bayes posterior estimator and the PESL under the squared error loss function. The numerical simulations exemplify our theoretical studies that the PESLs do not depend on the sample, and that the Bayes posterior estimator and the PESL under the squared error loss function are unanimously larger than those under Stein's loss function. Finally, we calculate the Bayes posterior estimators and the PESLs of the monthly simple returns of the SSE Composite Index.