胡泽春, 周倩倩. 关于概率空间与次线性期望空间中的随机变量一致可积性的一个注记[J]. 应用概率统计, 2018, 34(6): 577-586. DOI: 10.3969/j.issn.1001-4268.2018.06.003
引用本文: 胡泽春, 周倩倩. 关于概率空间与次线性期望空间中的随机变量一致可积性的一个注记[J]. 应用概率统计, 2018, 34(6): 577-586. DOI: 10.3969/j.issn.1001-4268.2018.06.003
HU Zechun, ZHOU Qianqian. A Note on Uniform Integrability of Random Variables in a Probability Space and Sublinear Expectation Space[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(6): 577-586. DOI: 10.3969/j.issn.1001-4268.2018.06.003
Citation: HU Zechun, ZHOU Qianqian. A Note on Uniform Integrability of Random Variables in a Probability Space and Sublinear Expectation Space[J]. Chinese Journal of Applied Probability and Statistics, 2018, 34(6): 577-586. DOI: 10.3969/j.issn.1001-4268.2018.06.003

关于概率空间与次线性期望空间中的随机变量一致可积性的一个注记

A Note on Uniform Integrability of Random Variables in a Probability Space and Sublinear Expectation Space

  • 摘要: 在这篇注记中我们讨论随机变量的一致可积性.在概率空间中, 我们引进了随机变量一致可积性的两个新的定义,并证明了他们与经典定义等价. 在次线性期望空间中, 我们给出了随机变量一致可积性的德拉瓦利普桑准则, 并作了一些其它讨论.

     

    Abstract: In this note we discuss uniform integrability of random variables. In a probability space, we introduce two new notions on uniform integrability of random variables, and prove that they are equivalent to the classic one. In a sublinear expectation space, we give de La Vall\'ee Poussin criterion for the uniform integrability of random variables and do some other discussions.

     

/

返回文章
返回