单指标模型异方差检
Testing the Heteroscedasticity in Single-Index Model
-
摘要: 在可加回归模型中, 高维回归分析一般采用单指标模型.该模型与参数模型相比更加灵活, 同时避免了维数灾难,因为单指标将标准变量向量的维数降低为单变量指标. 本文构建了一个带有函数型误差项的单指数回归模型用于检验单指标模型的异方差性.由于回归模型的有效推断要求在存在异方差的情况下考虑异方差,本文提出了检验单指标模型方差不变性的假设. 将Levene检验和无限因子水平的方差分析理论结合得到检验统计量用来评估方差同质性.模拟研究显示与已有方法相比, 所提检验统计量适用于多种情形.最后将本文的方法应用于分析一组实际数据.Abstract: In the additive regression models, the single-index model is considered commonly for high dimensional regression analysis. The specification of this model that it is more flexible compared with a parametric model, and it avoids the curse of dimensionality because the single-index reduces the dimensionality of a standard variable vector (x in the multi-regression) to a univariate index (\beta^\T X in the single-index model). In this paper, we developed a single-index regression model with a functional errors' term that serves in checking the heteroscedasticity. Since the efficient inference of a regression model demands that heteroscedasticity is regarded when it exists, this paper presents the assumptions of testing variance constancy in single-index models. The test statistic is assessing the variance homogeneity stated as a combination of Levene's test and the theories of ANOVA for the infinite factor levels. The test statistic in the simulation studies displays appropriately in all situations compared to a well-known method and applies to a real dataset.