韩琦, 陈芷禾, 殷世德, 陆自强. 有限图上的量子游荡的相关性质[J]. 应用概率统计, 2020, 36(4): 365-380. DOI: 10.3969/j.issn.1001-4268.2020.04.004
引用本文: 韩琦, 陈芷禾, 殷世德, 陆自强. 有限图上的量子游荡的相关性质[J]. 应用概率统计, 2020, 36(4): 365-380. DOI: 10.3969/j.issn.1001-4268.2020.04.004
HAN Qi, CHEN Zhihe, YIN Shide, LU Ziqiang. The Related Properties of Quantum Walk on the Finite Graphs[J]. Chinese Journal of Applied Probability and Statistics, 2020, 36(4): 365-380. DOI: 10.3969/j.issn.1001-4268.2020.04.004
Citation: HAN Qi, CHEN Zhihe, YIN Shide, LU Ziqiang. The Related Properties of Quantum Walk on the Finite Graphs[J]. Chinese Journal of Applied Probability and Statistics, 2020, 36(4): 365-380. DOI: 10.3969/j.issn.1001-4268.2020.04.004

有限图上的量子游荡的相关性质

The Related Properties of Quantum Walk on the Finite Graphs

  • 摘要: 基于Fourier变换,我们得到了有限图上的量子游荡的解析解相关性质.主要包括环上的量子游荡一般态解析解的性质、二维晶格上的特殊量子游荡的无偏性及其超立方体上的量子游荡初始条件与不变子空间的一组基之间的关系.

     

    Abstract: Based on Fourier transform, we obtain properties of the analytical solution of quantum walk on finite graphs. It mainly includes properties of the analytical solution of general state of quantum walk on cycle, the unbiasedness of special quantum walk on two-dimensional lattice and the relationship between the initial condition of quantum walk on hypercube and a set of basis in an invariant subspace.

     

/

返回文章
返回