具有相依风险的有限时间破产概率的渐近估计和CMC模拟
Asymptotic Estimates of Finite-Time Ruin Probabilities with Dependent Risks and CMC Simulations
-
摘要: 我们考虑了一个具有相依结构的离散时间风险模型,其中索赔额\X_n\_n\geq1遵循一个具有独立同分布(i.i.d.)噪声项\\varepsilon_n\_n\geq1的单边线性过程,且噪声项和金融风险形成了一系列独立同分布的副本,这些副本是来自于具有相依结构的一个随机对(\varepsilon,Y).当乘积\varepsilon Y具有重尾分布时,我们建立了这种离散时间风险模型中破产概率的一些渐近估计. 最后,我们使用原始的蒙特卡罗(CMC)模拟来验证我们的结果.Abstract: We consider a discrete-time risk model with dependence structures, where the claim-sizes \X_n\_n\geq1 follow a one-sided linear process with independent and identically distributed (i.i.d.) innovations \\varepsilon_n\_n\geq1, and the innovations and financial risks form a sequence of independent and identically distributed copies of a random pair (\varepsilon,Y) with dependent components. When the product \varepsilon Y has a heavy-tailed distribution, we establish some asymptotic estimates of the ruin probabilities in this discrete-time risk model. Finally, we use a Crude Monte Carlo (CMC) simulation to verify our results.