石万林. 分枝布朗运动最右位置的中偏差[J]. 应用概率统计, 2021, 37(1): 37-46. DOI: 10.3969/j.issn.1001-4268.2021.01.004
引用本文: 石万林. 分枝布朗运动最右位置的中偏差[J]. 应用概率统计, 2021, 37(1): 37-46. DOI: 10.3969/j.issn.1001-4268.2021.01.004
SHI Wanlin. Moderate Deviation for the Rightmost Position in a Branching Brownian Motion[J]. Chinese Journal of Applied Probability and Statistics, 2021, 37(1): 37-46. DOI: 10.3969/j.issn.1001-4268.2021.01.004
Citation: SHI Wanlin. Moderate Deviation for the Rightmost Position in a Branching Brownian Motion[J]. Chinese Journal of Applied Probability and Statistics, 2021, 37(1): 37-46. DOI: 10.3969/j.issn.1001-4268.2021.01.004

分枝布朗运动最右位置的中偏差

Moderate Deviation for the Rightmost Position in a Branching Brownian Motion

  • 摘要: 我们研究了分枝布朗运动最右粒子位置的中偏差概率,并且得到了中偏差函数. 首先,Chauvin和Rouault考虑了分枝布朗运动最右位置的大偏差概率. 最近,Derrida和Shi对同样的模型研究了其下偏差. 相比之下, 我们的结果更加广泛.

     

    Abstract: We study the moderate deviation probability of the position of the rightmost particle in a branching Brownian motion and obtain its moderate deviation function. Firstly, Chauvin and Rouault studied the large deviation probability for the rightmost position in a branching Brownian motion. Recently, Derrida and Shi considered lower deviation for the same model. By contrast, Our main result is more extensive.

     

/

返回文章
返回