张小玥, 张美娟. 随机环境中有界跳幅的分枝随机游动[J]. 应用概率统计, 2021, 37(1): 47-58. DOI: 10.3969/j.issn.1001-4268.2021.01.006
引用本文: 张小玥, 张美娟. 随机环境中有界跳幅的分枝随机游动[J]. 应用概率统计, 2021, 37(1): 47-58. DOI: 10.3969/j.issn.1001-4268.2021.01.006
ZHANG Xiaoyue, ZHANG Meijuan. Branching Random Walks with Bounded Steps in Random Environments[J]. Chinese Journal of Applied Probability and Statistics, 2021, 37(1): 47-58. DOI: 10.3969/j.issn.1001-4268.2021.01.006
Citation: ZHANG Xiaoyue, ZHANG Meijuan. Branching Random Walks with Bounded Steps in Random Environments[J]. Chinese Journal of Applied Probability and Statistics, 2021, 37(1): 47-58. DOI: 10.3969/j.issn.1001-4268.2021.01.006

随机环境中有界跳幅的分枝随机游动

Branching Random Walks with Bounded Steps in Random Environments

  • 摘要: 考虑随机环境中有界跳幅的分枝随机游动,其中粒子的繁衍构成时间随机环境中的分枝过程,粒子的运动遵循空间随机环境中有界跳幅的随机游动规律.在分枝过程不灭绝的条件下, 文章研究n时刻最右粒子位置的极限性质.

     

    Abstract: We consider a branching random walk with bounded steps in random environments, where the particles are produced as a branching process with a random environment in time, and move independently as a random walk with bounded steps on \mathbbZ with a random environment in location. We study the speed of the rightmost particle, conditionally on the survival of the branching process.

     

/

返回文章
返回