关于对称拟凸多项式的不相连定理
Unlinking Theorem for Symmetric Quasi-Convex Polynomials
-
摘要: 假定\mu_n为\mathbbR^n上的标准高斯测度,X为mathbbR^n上的随机向量, 分布为\mu_n. 不相连猜测说的是:如果f与g为\mathbbR^n上的两个多项式, 而且f(X)与g(X)相互独立,则存在\mathbbR^n上的正交变换Y=LX及整数k使得f\circ L^-1为(y_1,y_2,\cdots,y_k)的函数,g\circ L^-1~为(y_k+1,y_k+2,\cdots,y_n)的函数. 此时,称f与g不相连. 在这篇注记中, 我们证明:对于两个对称拟凸多项式f与g, 如果f(X)与g(X)相互独立,则f与g不相连.Abstract: Let \mu_n be the standard Gaussian measure on \mathbbR^n and X be a random vector on \mathbbR^n with the law \mu_n. U-conjecture states that if f and g are two polynomials on \mathbbR^n such that f(X) and g(X) are independent, then there exist an orthogonal transformation Y=LX on \mathbbR^n and an integer k such that f\circ L^-1 is a function of (y_1,y_2,\cdots,y_k) and g\circ L^-1 is a function of (y_k+1,y_k+2,\cdots,y_n). In this case, f and g are said to be unlinked. In this note, we prove that two symmetric, quasi-convex polynomials f and g are unlinked if f(X) and g(X) are independent.