姜昊升, 赵胜利. 最小低阶混杂稳健参数裂区设计[J]. 应用概率统计, 2022, 38(5): 745-764. DOI: 10.3969/j.issn.1001-4268.2022.05.008
引用本文: 姜昊升, 赵胜利. 最小低阶混杂稳健参数裂区设计[J]. 应用概率统计, 2022, 38(5): 745-764. DOI: 10.3969/j.issn.1001-4268.2022.05.008
JIANG Haosheng, ZHAO Sheng. Minimum Aberration Robust Parameter Split-Plot Designs[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(5): 745-764. DOI: 10.3969/j.issn.1001-4268.2022.05.008
Citation: JIANG Haosheng, ZHAO Sheng. Minimum Aberration Robust Parameter Split-Plot Designs[J]. Chinese Journal of Applied Probability and Statistics, 2022, 38(5): 745-764. DOI: 10.3969/j.issn.1001-4268.2022.05.008

最小低阶混杂稳健参数裂区设计

Minimum Aberration Robust Parameter Split-Plot Designs

  • 摘要: 稳健参数设计是一种为了减少产品或过程变异性的工程学方法.如果将稳健参数设计中的噪声因子和控制因子分别视为整区因子和子区因子,可以使用部分因子裂区设计.本文在稳健参数设计的背景下提出了一种筛选部分因子裂区设计的新的准则,即子区型最小低阶混杂准则, 并对子区型最小低阶混杂裂区设计的构造理论做出了研究.把具有8, 16和32个水平组合的子区型最小低阶混杂裂区设计制成了表格.

     

    Abstract: Robust parameter design is an engineering methodology for reducing the variation of a product or a process. If the noise factors and control factors in such a design are treated as the whole plot factors and subplot factors, then fractional factorial split-plot (FFSP) design can be used. This paper proposes a new optimal criterion for selecting FFSP designs in the robust parameter design circumstances, that is, the minimum aberration of subplot type (SP-MA) criterion. The construction theory of SP-MA FFSP designs is studied. The SP-MA FFSP designs with 8, 16, and 32 runs are tabulated.

     

/

返回文章
返回