郝红霞, 胡红倩, 韩忠成, 林金官. 带有时变杠杆效应的随机波动率模型参数估计及其应用[J]. 应用概率统计, 2024, 40(2): 264-276. DOI: 10.3969/j.issn.1001-4268.2024.02.003
引用本文: 郝红霞, 胡红倩, 韩忠成, 林金官. 带有时变杠杆效应的随机波动率模型参数估计及其应用[J]. 应用概率统计, 2024, 40(2): 264-276. DOI: 10.3969/j.issn.1001-4268.2024.02.003
HAO Hongxia, HU Hongqian, HAN Zhongcheng, LIN Jinguan. Parameter Estimation and Applications for Stochastic Volatility Model with Time-Varying Leverage Effect[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(2): 264-276. DOI: 10.3969/j.issn.1001-4268.2024.02.003
Citation: HAO Hongxia, HU Hongqian, HAN Zhongcheng, LIN Jinguan. Parameter Estimation and Applications for Stochastic Volatility Model with Time-Varying Leverage Effect[J]. Chinese Journal of Applied Probability and Statistics, 2024, 40(2): 264-276. DOI: 10.3969/j.issn.1001-4268.2024.02.003

带有时变杠杆效应的随机波动率模型参数估计及其应用

Parameter Estimation and Applications for Stochastic Volatility Model with Time-Varying Leverage Effect

  • 摘要: 为了更好地捕捉金融时间序列中杠杆效应的时变非对称性,本文基于线性样条思想, 提出一种带有时变杠杆效应的半参数随机波动率模型,并利用贝叶斯MCMC方法对所提模型中的参数进行了估计.模拟研究表明贝叶斯MCMC方法在所提模型的参数估计方面有着良好的有限样本表现.最后利用本文所提出的带有时变杠杆效应的半参数随机波动率模型对2000年1月4日至2020年8月18日的上证综合指数和深证成份指数日收益数据进行了实证分析,结果表明利用本文所提出的模型拟合这两组实例数据是合理的.

     

    Abstract: To effectively capture the time-varying asymmetry of leverage effects in financial time series, this paper introduces a semi-parametric stochastic volatility model incorporating time-varying leverage effects based on linear splines. The parameters of this model are estimated using the Bayesian Markov Chain Monte Carlo (MCMC) method. Simulation studies indicate that the Bayesian MCMC method performs well in parameter estimation for the proposed model, even with limited sample sizes. Finally, the suggested semi-parametric stochastic volatility model with time-varying leverage effects is applied to the empirical analysis of daily returns data for the Shanghai Composite Index and the Shenzhen Component Index from January 4, 2000, to August 18, 2020. The results demonstrate the superiority of the proposed method.

     

/

返回文章
返回