模型的展开与广义正交设计

DECOMPOSITION FOR THE MODEL AND GENERALIZED ORTHOGONAL DESIGN

  • 摘要: 考虑试验设计与分析问题中的一般模式 y=η(X)+ε其中η(X)是描述试验系统的数学模型,X是输入变量(因素),ε是试验过程中的干扰误差,Y为输出量(观测值)。本文根据设计,将η(x)展开为各种效应函数,使模型根据效应函数的假定来简化,从而达到减少网点的试验数。经典的试验设计和方差分析问题可作为本文的特例。同时本文推广正交设计概念,从另一角度上看待现有的各种设计,提出一些新的设计的构造问题以及函数的计算问题。

     

    Abstract: The concept of orthogonal design of experiments is generalized and some new ideas are proposed in this paper. Let us consider the model Y=η(X)+εwhere Y can be observed and ε is the random error. One always makes assumption that ηX) is the linear combination of known function φiX), i=1, …, p, for classical expe- rimental design. But now, ηX) is assumed to be a function defined on Rm. We consider X as a random vector taking value in Rm. Any distribution of X is called a design, and if its components are independent of each other, then it is called orthogonal. Let Xa=(xi2, xi2, …, x) with 1≤i1i2…<iαm, 1≤αm, and \mu\left(X_a\right)=\sum_\beta=0^\infty(-1)^a-\beta \sum_X_a \subset X_\theta M\left(X_\beta\right) where MXβ)=EηX)/Xβ) then μXα) is called interactive effective function among xi1, xi2…, x. In this paper, we give the decomposition \eta(X)=\sum_\beta=0^m \sum_X_A \subset X \mu\left(X_B\right) and discuss the properties of effective function for generalized orthogonal experimental designs. Finally, some numerical examples are given.

     

/

返回文章
返回