椭球等高分布族中T02的精确分布
ON THE DENSITY FUNCTION OF T02 FROM ELLIPTICAL DISTRIBUTION
-
摘要: 设X~ECp(u1,Σ,φ),即X服从椭球等高布分;X1,X2,…,Xm是来自X的样本,作 T_0^2=(\barX-u)^\prime \Sigma^-1(\barX-u), \quad\left(\barX=\frac1n \sum_i=1^n X_i\right)本文将在一定条件下,给出T02的密度函数。Abstract: Let X be a p-dimension random variable, and X~ECp(u1,Σ,φ),that is, the characteristic function of X is φ((t-μ)’Σ(t-μ)),X1,…,Xm are samples from X. In this paper we obtain the density function of T_0^2=(\barX-u)^\prime \Sigma^-1(\barX-u), \quad\left(\barX=\frac1n \sum_i=1^n X_i\right) under some assumptions.