多元Liouville分布的进一步探讨及一些有关分布

A FURTHER STUDY OF MULTIVARIATE LIOUVILLE DISTRIBUTION AND SOME RELATED DISTRIBUTIONS

  • 摘要: 本文继1、2两文之后进一步讨论了多元Liouville分布(ML分布)的一些性质,去掉了1、2两文中关于独立性刻划的附加限制,同时论证了部分多个分量之和在ML分布中的重要地位,并由此得出了ML分布的边缘刻划。另外也给出了刻度不变统计量关于ML分布类的一些良好性质,并将上述结果应用于广义多元Liouville分布(GML分布)及其它有关分布类的讨论。

     

    Abstract: Suppose (X1, …, Xn) has a multivariate Liouville distribution (MLD) Lna1, …, αn; f(·) and Γθ,α) is a Gamma distribution. Then Theorem 2.1 For any given r, the distribution of (X1, …, Xn) is uniquely determined by the distribution of sum from 1 to rXi). Specially, sum from 1 to rXi)~Γθ, sum from 1 to rαi))implies: X1, …, Xn are independent and XiΓθ, αii=1, …, n.
    Theorem 4.1 If T(·) is a scale invariant statistic. Then the distribution of TX1, …, Xn) is independent of f(·). Also TX1, …, Xn) and sum from 1 to rXi) are mutually independent.
    Thispaper also removes all the explicit and implicit restrictions on characterization of MLD by independence in 1, 2, and gives some other characterization results. Many similar results are obtained about the so called generalized MLD and some related distributions.

     

/

返回文章
返回